Please use this identifier to cite or link to this item: https://dspace.chmnu.edu.ua/jspui/handle/123456789/1084
Title: Implementation of Generative Adversarial Networks in Mobile Applications for Image Data Enhancement
Authors: Striuk, O.
Kondratenko, Y.
Keywords: Artificial intelligence
deep learning
DL
GAN
generative adversarial network
low resolution
LR
machine learning
ML
neural networks
SR
SRGAN
super resolution
Issue Date: 2023
Publisher: River Publishers
Abstract: This article aims to explore and research GANs as a tool for mobile devices that can generate high-resolution images from low-resolution samples and reduce blurring. In addition, the authors also analyse the specifics of GAN, SRGAN, and ESRGAN loss functions and their features. GANs are widely used for a vast range of applied tasks for image manipulations. They’re able to synthesize, combine, and restore graphical samples of high quality that are almost indistinguishable from real data. The main scope of the research is to study the possibility to use GANs for the said tasks, and their potential implementation in mobile applications.
Description: Striuk, O., & Kondratenko, Y. (2023). Implementation of Generative Adversarial Networks in Mobile Applications for Image Data Enhancement. Journal of Mobile Multimedia, 19(3), 823-838. doi:10.13052/jmm1550-4646.1938
URI: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85152776863&doi=10.13052%2fjmm1550-4646.1938&partnerID=40&md
https://dspace.chmnu.edu.ua/jspui/handle/123456789/1084
https://journals.riverpublishers.com/index.php/JMM/article/view/15053
ISSN: 15504646
Appears in Collections:Публікації науково-педагогічних працівників ЧНУ імені Петра Могили у БД Scopus

Files in This Item:
File Description SizeFormat 
Striuk, O., Kondratenko, Y. Implementation of Generative.pdf63.69 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.