Please use this identifier to cite or link to this item: https://dspace.chmnu.edu.ua/jspui/handle/123456789/1084
Full metadata record
DC FieldValueLanguage
dc.contributor.authorStriuk, O.-
dc.contributor.authorKondratenko, Y.-
dc.date.accessioned2023-05-01T07:46:10Z-
dc.date.available2023-05-01T07:46:10Z-
dc.date.issued2023-
dc.identifier.issn15504646-
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85152776863&doi=10.13052%2fjmm1550-4646.1938&partnerID=40&md-
dc.identifier.urihttps://dspace.chmnu.edu.ua/jspui/handle/123456789/1084-
dc.identifier.urihttps://journals.riverpublishers.com/index.php/JMM/article/view/15053uk_UA
dc.descriptionStriuk, O., & Kondratenko, Y. (2023). Implementation of Generative Adversarial Networks in Mobile Applications for Image Data Enhancement. Journal of Mobile Multimedia, 19(3), 823-838. doi:10.13052/jmm1550-4646.1938uk_UA
dc.description.abstractThis article aims to explore and research GANs as a tool for mobile devices that can generate high-resolution images from low-resolution samples and reduce blurring. In addition, the authors also analyse the specifics of GAN, SRGAN, and ESRGAN loss functions and their features. GANs are widely used for a vast range of applied tasks for image manipulations. They’re able to synthesize, combine, and restore graphical samples of high quality that are almost indistinguishable from real data. The main scope of the research is to study the possibility to use GANs for the said tasks, and their potential implementation in mobile applications.uk_UA
dc.language.isoenuk_UA
dc.publisherRiver Publishersuk_UA
dc.subjectArtificial intelligenceuk_UA
dc.subjectdeep learninguk_UA
dc.subjectDLuk_UA
dc.subjectGANuk_UA
dc.subjectgenerative adversarial networkuk_UA
dc.subjectlow resolutionuk_UA
dc.subjectLRuk_UA
dc.subjectmachine learninguk_UA
dc.subjectMLuk_UA
dc.subjectneural networksuk_UA
dc.subjectSRuk_UA
dc.subjectSRGANuk_UA
dc.subjectsuper resolutionuk_UA
dc.titleImplementation of Generative Adversarial Networks in Mobile Applications for Image Data Enhancementuk_UA
dc.typeArticleuk_UA
Appears in Collections:Публікації науково-педагогічних працівників ЧНУ імені Петра Могили у БД Scopus

Files in This Item:
File Description SizeFormat 
Striuk, O., Kondratenko, Y. Implementation of Generative.pdf63.69 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.