Please use this identifier to cite or link to this item:
https://dspace.chmnu.edu.ua/jspui/handle/123456789/2919
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Vladov, S. | - |
dc.contributor.author | Vysotska, V. | - |
dc.contributor.author | Sokurenko, V. | - |
dc.contributor.author | Muzychuk, O. | - |
dc.contributor.author | Gozhyj, A. | - |
dc.contributor.author | Kalinina, I. | - |
dc.date.accessioned | 2025-08-20T06:47:18Z | - |
dc.date.available | 2025-08-20T06:47:18Z | - |
dc.date.issued | 2024 | - |
dc.identifier.isbn | 979-8-3315-4264-1 ; 979-8-3315-4263-4 | - |
dc.identifier.issn | 2766-3655 | - |
dc.identifier.uri | https://www.webofscience.com/wos/woscc/full-record/WOS:001515766800084 | - |
dc.identifier.uri | https://ieeexplore.ieee.org/document/10982674 | - |
dc.identifier.uri | https://dspace.chmnu.edu.ua/jspui/handle/123456789/2919 | - |
dc.description | Vladov, S., Vysotska, V., Sokurenko, V., Muzychuk, O., Gozhyj, A., & Kalinina, I. (2024). Defects Diagnostics Method Based on Statistical Big Data Analisis of Measured Parameters. 2024 IEEE 19th International Conference on Computer Science and Information Technologies (CSIT) oct. 16–19 2024, Lviv. Proceedings Paper. (1–4). IEEE. Lviv. DOI: 10.1109/CSIT65290.2024.10982674. | uk_UA |
dc.description.abstract | In this work, the proposed method effectively diagnoses defects by narrowing down suspected units, although it often underestimates the defect's numerical value. Reliability improves with more experimental data, aiding in identifying malfunctions, though false results can occur. Further research is needed on reliability's dependence on measured parameters and discretization degree. Diagnostics should consider different engine modes and note the linear model's error of up to 0.3% against an acceptable variation of +/- 2.5%. Reducing error requires narrowing the variation range, and expanding linearization applicability involves considering the Taylor expansion's second term. These results suggest limitations in other diagnostic methods, as parameter combinations can closely match experimental data. | uk_UA |
dc.description.sponsorship | Institute of Electrical and Electronics Engineers Inc | uk_UA |
dc.language.iso | en | uk_UA |
dc.publisher | IEEE | uk_UA |
dc.subject | helicopters turboshaft engines | uk_UA |
dc.subject | thermogasdynamic parameters | uk_UA |
dc.subject | discretization | uk_UA |
dc.subject | defect | uk_UA |
dc.title | Defects Diagnostics Method Based on Statistical Big Data Analisis of Measured Parameters | uk_UA |
dc.type | Thesis | uk_UA |
Appears in Collections: | Публікації науково-педагогічних працівників ЧНУ імені Петра Могили у БД Web of Science |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Vladov, S., Vysotska, V., Sokurenko, V., Muzychuk, J., Gozhyj A., & Kalinina I.pdf | 80.92 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.