Please use this identifier to cite or link to this item: https://dspace.chmnu.edu.ua/jspui/handle/123456789/2910
Full metadata record
DC FieldValueLanguage
dc.contributor.authorStriuk, O.-
dc.contributor.authorKondratenko, Y.-
dc.date.accessioned2025-08-18T13:19:57Z-
dc.date.available2025-08-18T13:19:57Z-
dc.date.issued2025-
dc.identifier.issn16130073-
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-105010182614&partnerID=40&md5=73b4cec0452b0283c2bafa99fceb55af-
dc.identifier.urihttps://dspace.chmnu.edu.ua/jspui/handle/123456789/2910-
dc.descriptionStriuk, O., & Kondratenko, Y. (2025). Gradient-Penalty GAN Framework for High-Fidelity Fingerprint Synthesis. In: Subbotin S. (ed). CEUR Workshop Proceedings. 8th International Workshop on Computer Modeling and Intelligent Systems, CMIS 2025, 3988, (175–188). CEUR-WS. Zaporizhzhia. https://www.scopus.com/inward/record.uri?eid=2-s2.0-105010182614&partnerID=40&md5=73b4cec0452b0283c2bafa99fceb55afuk_UA
dc.description.abstractThe rapid advancements in generative adversarial networks (GANs) have significantly impacted digital content synthesis, presenting both opportunities and challenges in multimedia forensics and cybersecurity. We present an Enhanced Adaptive DCGAN (EADC-GAN) for generating high-fidelity synthetic fingerprints, addressing core challenges in training stability and sample diversity. By combining Wasserstein loss with gradient penalty (WGAN-GP), instance normalization in the discriminator, and tailored architectural refinements, our model achieves strong image realism at reduced training cost. Compared to prior DCGAN-based methods, EADC-GAN synthesizes more diverse, artifact-free samples in fewer epochs, making it suitable for scalable biometric data generation. This has key implications for secure authentication, privacy-preserving biometric datasets, and adversarial robustness in cybersecurity contexts.uk_UA
dc.language.isoenuk_UA
dc.publisherCEUR-WSuk_UA
dc.subjectadversarial robustnessuk_UA
dc.subjectbiometric securityuk_UA
dc.subjectcybersecurityuk_UA
dc.subjectDCGANuk_UA
dc.subjectdeep learninguk_UA
dc.subjectfingerprint synthesisuk_UA
dc.subjectgenerative adversarial networksuk_UA
dc.subjectinstance normalizationuk_UA
dc.subjectSynthetic fingerprintsuk_UA
dc.subjectWGAN-GPuk_UA
dc.titleGradient-Penalty GAN Framework for High-Fidelity Fingerprint Synthesis.uk_UA
dc.typeThesisuk_UA
Appears in Collections:Публікації науково-педагогічних працівників ЧНУ імені Петра Могили у БД Scopus

Files in This Item:
File Description SizeFormat 
Striuk O., & Kondratenko Y..txt421 BTextView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.