Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: https://dspace.chmnu.edu.ua/jspui/handle/123456789/2910
Titel: Gradient-Penalty GAN Framework for High-Fidelity Fingerprint Synthesis.
Autoren: Striuk, O.
Kondratenko, Y.
Stichwörter: adversarial robustness
biometric security
cybersecurity
DCGAN
deep learning
fingerprint synthesis
generative adversarial networks
instance normalization
Synthetic fingerprints
WGAN-GP
Erscheinungsdatum: 2025
Herausgeber: CEUR-WS
Zusammenfassung: The rapid advancements in generative adversarial networks (GANs) have significantly impacted digital content synthesis, presenting both opportunities and challenges in multimedia forensics and cybersecurity. We present an Enhanced Adaptive DCGAN (EADC-GAN) for generating high-fidelity synthetic fingerprints, addressing core challenges in training stability and sample diversity. By combining Wasserstein loss with gradient penalty (WGAN-GP), instance normalization in the discriminator, and tailored architectural refinements, our model achieves strong image realism at reduced training cost. Compared to prior DCGAN-based methods, EADC-GAN synthesizes more diverse, artifact-free samples in fewer epochs, making it suitable for scalable biometric data generation. This has key implications for secure authentication, privacy-preserving biometric datasets, and adversarial robustness in cybersecurity contexts.
Beschreibung: Striuk, O., & Kondratenko, Y. (2025). Gradient-Penalty GAN Framework for High-Fidelity Fingerprint Synthesis. In: Subbotin S. (ed). CEUR Workshop Proceedings. 8th International Workshop on Computer Modeling and Intelligent Systems, CMIS 2025, 3988, (175–188). CEUR-WS. Zaporizhzhia. https://www.scopus.com/inward/record.uri?eid=2-s2.0-105010182614&partnerID=40&md5=73b4cec0452b0283c2bafa99fceb55af
URI: https://www.scopus.com/inward/record.uri?eid=2-s2.0-105010182614&partnerID=40&md5=73b4cec0452b0283c2bafa99fceb55af
https://dspace.chmnu.edu.ua/jspui/handle/123456789/2910
ISSN: 16130073
Enthalten in den Sammlungen:Публікації науково-педагогічних працівників ЧНУ імені Петра Могили у БД Scopus

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
Striuk O., & Kondratenko Y..txt421 BTextÖffnen/Anzeigen


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt, soweit nicht anderweitig angezeigt.