Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: https://dspace.chmnu.edu.ua/jspui/handle/123456789/1285
Langanzeige der Metadaten
DC ElementWertSprache
dc.contributor.authorSidenko, I.-
dc.contributor.authorTrukhov, A.-
dc.contributor.authorKondratenko, G.-
dc.contributor.authorZhukov, Y.-
dc.contributor.authorKondratenko, Y.-
dc.date.accessioned2023-09-11T08:10:15Z-
dc.date.available2023-09-11T08:10:15Z-
dc.date.issued2023-
dc.identifier.issn23674512-
dc.identifier.urihttps://link.springer.com/chapter/10.1007/978-3-031-36118-0_56-
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85169058385&doi=10.1007%2f978-3-031-36118-0_56&partnerID=40&mDOI: 10.1007/978-3-031-36118-0_56-
dc.identifier.urihttps://dspace.chmnu.edu.ua/jspui/handle/123456789/1285-
dc.descriptionSidenko, I., Trukhov, A., Kondratenko, G., Zhukov, Y., & Kondratenko, Y. (2023). Machine Learning for Unmanned Aerial Vehicle Routing on Rough Terrain. Lecture Notes on Data Engineering and Communications Technologies, 181, 626-635, doi: 10.1007/978-3-031-36118-0_56uk_UA
dc.description.abstractThe paper considers the main methods of machine learning for unmanned aerial vehicle (drone) routing, simulates an environment for testing the flight of a drone, as well as a model with a neural network for the unmanned routing of a drone on rough terrain. The potential use of unmanned aerial vehicles is limited because today the control of drone flight is carried out in a semi-automatic mode on the operator's commands, or in remote mode using a control panel. Such a system is unstable to the human factor because it depends entirely on the operator. The relevance of the work is to use machine learning methods for drone routing, which will provide stable control of the unmanned aerial vehicle to perform a specific task. As a result of the work, a neural network architecture was developed, which was successfully implemented in a test model for routing an unmanned aerial vehicle on rough terrain. The test results showed that the unmanned aerial vehicle successfully avoids obstacles in the new environment.uk_UA
dc.language.isoenuk_UA
dc.publisherSpringer Science and Business Media Deutschland GmbHuk_UA
dc.subjectArtificial intelligenceuk_UA
dc.subjectMachine learninguk_UA
dc.subjectReinforced learninguk_UA
dc.subjectTransport routing problemuk_UA
dc.subjectUnmanned aerial vehicleuk_UA
dc.titleMachine Learning for Unmanned Aerial Vehicle Routing on Rough Terrainuk_UA
dc.typeBook chapteruk_UA
Enthalten in den Sammlungen:Публікації науково-педагогічних працівників ЧНУ імені Петра Могили у БД Scopus

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
Sidenko, I., Trukhov, A., Kondratenko, G., Zhukov, Y., Kondratenko, Y..pdf63.81 kBAdobe PDFÖffnen/Anzeigen


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt, soweit nicht anderweitig angezeigt.