Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen:
https://dspace.chmnu.edu.ua/jspui/handle/123456789/3093| Titel: | Efficiency analysis of GREEDI algorithm under delta-matroid constraints for subset selection in distributed systems |
| Sonstige Titel: | Аналіз ефективності алгоритму GREEDI в умовах обмежень дельта-матроїда для вибору підмножин у розподілених системах |
| Autoren: | Kulakovska, I. |
| Stichwörter: | approximation algorithm computational efficiency delta-matroid constraint distributed system feature selection greedy algorithm real-time processing sensor network subset optimization |
| Erscheinungsdatum: | 2025 |
| Herausgeber: | National Aerospace University Kharkiv Aviation Institute |
| Zusammenfassung: | The subject matter of the article is the efficiency analysis of greedy optimization algorithms for subset selection in distributed systems under delta-matroid constraints. The goal is to compare the performance of the classical unconstrained greedy algorithm and the GREEDI algorithm with delta-matroid constraints in terms of solution quality, computational characteristics, and scalability. The tasks to be solved are: to implement both algorithms; to perform simulations on synthetic graph datasets with sizes ranging from 10 to 100 nodes; to benchmark computational efficiency and approximation quality; to analyze the impact of delta-matroid constraints on benefit maximization and distributed execution. The methods used are: graph-based modeling, combinatorial optimization under matroid-type constraints, approximation algorithms, and distributed processing frameworks. The following results were obtained: GREEDI consistently provided higher-benefit subsets compared to the unconstrained greedy algorithm, achieving better trade-offs between execution time and solution quality; the distributed processing framework demonstrated scalability for large datasets and supported real-time responsiveness; performance advantages were more pronounced for larger graphs and higher constraint densities. Conclusions. The scientific novelty of the results obtained is as follows: 1) an experimental validation of the GREEDI algorithm under delta-matroid constraints for distributed subset selection was carried out; 2) the influence of such constraints on approximation quality and computational characteristics was quantified; 3) a scalable real-time processing approach for large graph-structured data was proposed, enabling potential applications in sensor deployment, recommendation systems, feature selection, and cache optimization. |
| Beschreibung: | Kulakovska, I. (2025). Efficiency analysis of GREEDI algorithm under delta-matroid constraints for subset selection in distributed systems = Аналіз ефективності алгоритму GREEDI в умовах обмежень дельта-матроїда для вибору підмножин у розподілених системах. Radioelectronic and Computer Systems, (4), 69–82. DOI: 10.32620/reks.2025.4.05 |
| URI: | https://www.scopus.com/pages/publications/105027675767 https://nti.khai.edu/ojs/index.php/reks/article/view/reks.2025.4.05 https://dspace.chmnu.edu.ua/jspui/handle/123456789/3093 |
| ISSN: | 18144225 |
| Enthalten in den Sammlungen: | Публікації науково-педагогічних працівників ЧНУ імені Петра Могили у БД Scopus |
Dateien zu dieser Ressource:
| Datei | Beschreibung | Größe | Format | |
|---|---|---|---|---|
| Kulakovska I.pdf | 68.39 kB | Adobe PDF | Öffnen/Anzeigen |
Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt, soweit nicht anderweitig angezeigt.