Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: https://dspace.chmnu.edu.ua/jspui/handle/123456789/3093
Titel: Efficiency analysis of GREEDI algorithm under delta-matroid constraints for subset selection in distributed systems
Sonstige Titel: Аналіз ефективності алгоритму GREEDI в умовах обмежень дельта-матроїда для вибору підмножин у розподілених системах
Autoren: Kulakovska, I.
Stichwörter: approximation algorithm
computational efficiency
delta-matroid constraint
distributed system
feature selection
greedy algorithm
real-time processing
sensor network
subset optimization
Erscheinungsdatum: 2025
Herausgeber: National Aerospace University Kharkiv Aviation Institute
Zusammenfassung: The subject matter of the article is the efficiency analysis of greedy optimization algorithms for subset selection in distributed systems under delta-matroid constraints. The goal is to compare the performance of the classical unconstrained greedy algorithm and the GREEDI algorithm with delta-matroid constraints in terms of solution quality, computational characteristics, and scalability. The tasks to be solved are: to implement both algorithms; to perform simulations on synthetic graph datasets with sizes ranging from 10 to 100 nodes; to benchmark computational efficiency and approximation quality; to analyze the impact of delta-matroid constraints on benefit maximization and distributed execution. The methods used are: graph-based modeling, combinatorial optimization under matroid-type constraints, approximation algorithms, and distributed processing frameworks. The following results were obtained: GREEDI consistently provided higher-benefit subsets compared to the unconstrained greedy algorithm, achieving better trade-offs between execution time and solution quality; the distributed processing framework demonstrated scalability for large datasets and supported real-time responsiveness; performance advantages were more pronounced for larger graphs and higher constraint densities. Conclusions. The scientific novelty of the results obtained is as follows: 1) an experimental validation of the GREEDI algorithm under delta-matroid constraints for distributed subset selection was carried out; 2) the influence of such constraints on approximation quality and computational characteristics was quantified; 3) a scalable real-time processing approach for large graph-structured data was proposed, enabling potential applications in sensor deployment, recommendation systems, feature selection, and cache optimization.
Beschreibung: Kulakovska, I. (2025). Efficiency analysis of GREEDI algorithm under delta-matroid constraints for subset selection in distributed systems = Аналіз ефективності алгоритму GREEDI в умовах обмежень дельта-матроїда для вибору підмножин у розподілених системах. Radioelectronic and Computer Systems, (4), 69–82. DOI: 10.32620/reks.2025.4.05
URI: https://www.scopus.com/pages/publications/105027675767
https://nti.khai.edu/ojs/index.php/reks/article/view/reks.2025.4.05
https://dspace.chmnu.edu.ua/jspui/handle/123456789/3093
ISSN: 18144225
Enthalten in den Sammlungen:Публікації науково-педагогічних працівників ЧНУ імені Петра Могили у БД Scopus

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
Kulakovska I.pdf68.39 kBAdobe PDFÖffnen/Anzeigen


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt, soweit nicht anderweitig angezeigt.