Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал:
https://dspace.chmnu.edu.ua/jspui/handle/123456789/3048| Назва: | Neural Network IDS/IPS Intrusion Detection and Prevention System with Adaptive Online Training to Improve Corporate Network Cybersecurity, Evidence Recording, and Interaction with Law Enforcement Agencies |
| Автори: | Vladov, S. Vysotska, V. Vashchenko, S. Bolvinov, S. Glubochenko, S. Repchonok, A. Korniienko, M. Nazarkevych, M. Herasymchuk, R. |
| Ключові слова: | IDS/IPS neural network system adaptive online training context-adaptive thresholding protection against poisoning adversarial-robustness temporal GNN variational uncertainty module distributionally robust optimization (DRO) forensic-readiness |
| Дата публікації: | 2025 |
| Видавництво: | MDPI |
| Короткий огляд (реферат): | Thise article examines the reliable online detection and IDS/IPS intrusion prevention in dynamic corporate networks problems, where traditional signature-based methods fail to keep pace with new and evolving attacks, and streaming data is susceptible to drift and targeted “poisoning” of the training dataset. As a solution, we propose a hybrid neural network system with adaptive online training, a formal minimax false-positive control framework, and a robustness mechanism set (a Huber model, pruned learning rate, DRO, a gradient-norm regularizer, and a prioritized replay). In practice, the system combines modal encoders for traffic, logs, and metrics; a temporal GNN for entity correlation; a variational module for uncertainty assessment; a differentiable symbolic unit for logical rules; an RL agent for incident prioritization; and an NLG module for explanations and the preparation of forensically relevant artifacts. In this case, the applied components are connected via a cognitive layer (cross-modal fusion memory), a Bayesian-neural network fuser, and a single multi-task loss function. The practical implementation includes the pipeline “novelty detection → active labelling → incremental supervised update” and chain-of-custody mechanisms for evidential fitness. A significant improvement in quality has been experimentally demonstrated, since the developed system achieves an ROC AUC of 0.96, an F1-score of 0.95, and a significantly lower FPR compared to basic architectures (MLP, CNN, and LSTM). In applied validation tasks, detection rates of ≈92–94% and resistance to distribution drift are noted. |
| Опис: | Vladov, S., Vysotska, V., Vashchenko, S., Bolvinov, S., Glubochenko, S., Repchonok, A., ... & Herasymchuk, R. (2025). Neural Network IDS/IPS Intrusion Detection and Prevention System with Adaptive Online Training to Improve Corporate Network Cybersecurity, Evidence Recording, and Interaction with Law Enforcement Agencies. Big Data and Cognitive Computing, 9(11), no. 267. DOI: 10.3390/bdcc9110267 |
| URI (Уніфікований ідентифікатор ресурсу): | https://www.scopus.com/pages/publications/105023195729 https://www.mdpi.com/2504-2289/9/11/267 https://dspace.chmnu.edu.ua/jspui/handle/123456789/3048 |
| ISSN: | 25042289 |
| Розташовується у зібраннях: | Публікації науково-педагогічних працівників ЧНУ імені Петра Могили у БД Scopus |
Файли цього матеріалу:
| Файл | Опис | Розмір | Формат | |
|---|---|---|---|---|
| Vladov, S., Vysotska, V., Vashchenko, S., Bolvinov, S., Glubochenko, S., Repchonok, A., ... & Herasymchuk, R..pdf | 29.47 kB | Adobe PDF | Переглянути/Відкрити |
Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.