Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: https://dspace.chmnu.edu.ua/jspui/handle/123456789/2930
Назва: Improving the efficiency of damaged buildings detection based on ASPP technologies
Автори: Dymo, V.
Gozhyj, A.
Kalinina, I.
Ключові слова: Architecture
Efficiency
Image segmentation
Network architecture
Pixels
Remote sensing
Semantic Web
Semantics
Statistical tests
Well testing
Дата публікації: 2025
Видавництво: CEUR-WS
Короткий огляд (реферат): The paper presents an increase in the efficiency of detecting damaged buildings on satellite images of the U-Net convolutional network model by modifying. Instead of the usual bottleneck, the use of atrous spatial pyramid pooling (ASPP) is proposed. As part of the study, the dataset was expanded to 100 images with dimensions of 512x512 pixels, and various augmentations were applied to increase the variability of the dataset, which contributed to more effective training on a limited dataset. Weighting coefficients for each image were also added to the dataset, which were used during training to solve the problem of the predominance of the number of pixels of one class over others. Models of different configurations with an ASPP layer were built and compared with the base U-Net model without ASPP. As a result of testing on the evaluation dataset, an increase in the mean IoU by 5.39% compared to the classical architecture was observed, as well as a significant reduction in overall losses and an increase in the mean IoU by about 2% on a separate testing dataset, which indicates a corresponding increase in the model's efficiency. The proposed architecture can be used in further studies of segmentation of images of buildings damaged by hostilities.
Опис: Dymo, V., Gozhyj, A., & Kalinina, I. (2025). Improving the efficiency of damaged buildings detection based on ASPP technologies. CEUR Workshop Proceedings. 7th International Workshop on Modern Machine Learning Technologies, MoMLeT, 14–15 June 2025, Lviv. Conference Proceedings, 4004, (109 – 120). https://www.scopus.com/inward/record.uri?eid=2-s2.0-105012713892&partnerID=40&md5=6cd4fb37ea39f1c96d8e2243b6175ef0
URI (Уніфікований ідентифікатор ресурсу): https://www.scopus.com/inward/record.uri?eid=2-s2.0-105012713892&partnerID=40&md5=6cd4fb37ea39f1c96d8e2243b6175ef0
https://dspace.chmnu.edu.ua/jspui/handle/123456789/2930
ISSN: 16130073
Розташовується у зібраннях:Публікації науково-педагогічних працівників ЧНУ імені Петра Могили у БД Scopus

Файли цього матеріалу:
Файл Опис РозмірФормат 
Dymo V., Gozhyj A., & Kalinina I.pdf101.87 kBAdobe PDFПереглянути/Відкрити


Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.