Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: https://dspace.chmnu.edu.ua/jspui/handle/123456789/2918
Назва: Multilevel Ensemble Approach in Classification Problems.
Автори: Kalinina, I.
Gozhyj, A.
Bidyuk, P.
Gozhyj, V.
Ключові слова: classification
multilevel heterogeneous ensembles
bias
variance
bagging
boosting
staking
two-level architecture of the classification system
Дата публікації: 2024
Видавництво: IEEE
Короткий огляд (реферат): The article discusses an approach to solving classification problems using multi-level heterogeneous ensembles. The approach allows reducing forecast errors by gradually reducing bias and variance using multi-level heterogeneous ensembles of forecast models. The main features and prerequisites for creating ensembles are considered. The total error of the machine learning algorithm is analyzed. It consists of three components: noise, bias and variance. The constituents of these components are investigated and determined. The process of creating a heterogeneous ensemble is considered in detail. The most common methods of aggregating forecast values are analyzed: bagging, boosting and staking. The rationale for choosing the type of models for creating a heterogeneous multi-level ensemble structure is presented. A two-level architecture of the classification system based on the staking and bagging methods is proposed. A new classification algorithm has been developed to build a multilevel ensemble of models based on different basic methods. An example of implementing multi-level heterogeneous ensembles for solving classification problems is considered on two datasets: Blood Transfusion Service Center, and ILPD (Indian Liver Patient Dataset). To assess the quality of classifiers, many appropriate quality indicators were used. The results of the ensembles' functioning were analyzed. The effectiveness of multi-level heterogeneous ensembles in solving classification problems was proven.
Опис: Kalinina, I., Gozhyj, A., Bidyuk P., & Gozhyj V. (2024). Multilevel Ensemble Approach in Classification Problems. 2024 IEEE 19th International Conference on Computer Science and Information Technologies (CSIT), 2024. Proceedings Paper, 01-06, DOI: 10.1109/CSIT65290.2024.10982625.
URI (Уніфікований ідентифікатор ресурсу): https://www.webofscience.com/wos/woscc/full-record/WOS:001515766800048
https://ieeexplore.ieee.org/document/10982625
https://dspace.chmnu.edu.ua/jspui/handle/123456789/2918
ISSN: 2766-3655
Розташовується у зібраннях:Публікації науково-педагогічних працівників ЧНУ імені Петра Могили у БД Web of Science

Файли цього матеріалу:
Файл Опис РозмірФормат 
Kalinina, I., Gozhyj, A., Bidyuk P., & Gozhyj V.pdf30.19 kBAdobe PDFПереглянути/Відкрити


Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.