Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: https://dspace.chmnu.edu.ua/jspui/handle/123456789/2912
Titel: Improving the architecture of a two-level heterogeneous ensemble for solvingImprovingmachine learning problems
Autoren: Kalinina, I.
Gozhyj, A.
Gozhyi, V.
Shiyan, S.
Stichwörter: bagging
boosting
machine learning
stacking
two-level heterogeneous ensemble of models
Erscheinungsdatum: 2024
Herausgeber: CEUR-WS
Zusammenfassung: The article investigates an approach to improving the architectures of two-level heterogeneous ensembles of models for solving machine learning problems. An improved ensemble architecture is proposed. In which the boosting method is used at the first level of ensemble learning to gradually improve the solutions of the base models. At the second level, the stacking method is used to aggregate the solutions of the base models using a metamodel. The base models used were a model based on multiple linear regression, a decision tree model, a random forest model, a support vector model, a KNN model, a model based on an artificial neural network, and a multivariate adaptive regression spline model. These models are divided into two groups: undertrained and over trained. The experimental part of the study was carried out on solving the problem of predicting the electricity generation indicators of hybrid power plants based on environmental indicators. The use of the improved architecture of a two-level heterogeneous ensemble demonstrated an increase in forecast accuracy compared to other ensemble architects and solutions based on any of the base models. The proposed approach is effective in solving machine learning problems.
Beschreibung: Kalinina, I., Gozhyj, A., Gozhyi, V., & Shiyan, S. (2024). Improving the architecture of a two-level heterogeneous ensemble for solvingImprovingmachine learning problems. In: Cherednichenko O., Lytvyn V., Vysotska V., Vysotska V., Kowalska-Stychen A., & Bodyanskiy Y. (Eds) Intelligent Systems Workshop at 9th International Conference on Computational Linguistics and Intelligent Systems, ISW-CoLInS 2025. CEUR Workshop Proceedings, 3983, 153 – 165. CEUR-WS. Kharkiv
URI: https://www.scopus.com/inward/record.uri?eid=2-s2.0-105009698220&partnerID=40&md5=90111e79f80607d09438c1cc5b0400c2
https://dspace.chmnu.edu.ua/jspui/handle/123456789/2912
ISSN: 16130073
Enthalten in den Sammlungen:Публікації науково-педагогічних працівників ЧНУ імені Петра Могили у БД Scopus

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
Kalinina I., Gozhyj A., Gozhyi V., & Shiyan S..txt598 BTextÖffnen/Anzeigen


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt, soweit nicht anderweitig angezeigt.