Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: https://dspace.chmnu.edu.ua/jspui/handle/123456789/2813
Назва: Multilevel Ensemble Approach in Classification Problems
Автори: Kalinina, I.
Gozhyj, A.
Bidyuk, P.
Gozhyj, V.
Ключові слова: bagging
bias
boosting
classification
multilevel heterogeneous ensembles
staking
two-level architecture of the classification system
variance
Дата публікації: 2024
Видавництво: IEEE
Короткий огляд (реферат): The article discusses an approach to solving classification problems using multi-level heterogeneous ensembles. The approach allows reducing forecast errors by gradually reducing bias and variance using multi-level heterogeneous ensembles of forecast models. The main features and prerequisites for creating ensembles are considered. The total error of the machine learning algorithm is analyzed. It consists of three components: noise, bias and variance. The constituents of these components are investigated and determined. The process of creating a heterogeneous ensemble is considered in detail. The most common methods of aggregating forecast values are analyzed: bagging, boosting and staking. The rationale for choosing the type of models for creating a heterogeneous multi-level ensemble structure is presented. A two-level architecture of the classification system based on the staking and bagging methods is proposed. A new classification algorithm has been developed to build a multi-level ensemble of models based on different basic methods. An example of implementing multi-level heterogeneous ensembles for solving classification problems is considered on two datasets: Blood Transfusion Service Center, and ILPD (Indian Liver Patient Dataset). To assess the quality of classifiers, many appropriate quality indicators were used. The results of the ensembles' functioning were analyzed. The effectiveness of multi-level heterogeneous ensembles in solving classification problems was proven.
Опис: Kalinina, I., Gozhyj, A., Bidyuk, P., & Gozhyj, V. (2024). Multilevel Ensemble Approach in Classification Problems. International Scientific and Technical Conference on Computer Sciences and Information Technologies. IEEE. Lviv. DOI: 10.1109/CSIT65290.2024.10982625
URI (Уніфікований ідентифікатор ресурсу): https://www.scopus.com/record/display.uri?eid=2-s2.0-105005831684&origin=SingleRecordEmailAlert&dgcid=raven_sc_affil_ru_ru_email&txGid=bdb1c405a899aad521c53ce2e4a357cb
https://ieeexplore.ieee.org/document/10982625
https://dspace.chmnu.edu.ua/jspui/handle/123456789/2813
ISBN: 979-833154262-7
ISSN: 27663655
Розташовується у зібраннях:Публікації науково-педагогічних працівників ЧНУ імені Петра Могили у БД Scopus

Файли цього матеріалу:
Файл Опис РозмірФормат 
Kalinina, I., Gozhyj, A., Bidyuk, P., Gozhyj, V..pdf59.41 kBAdobe PDFПереглянути/Відкрити


Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.