Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал:
https://dspace.chmnu.edu.ua/jspui/handle/123456789/2481
Назва: | Diagnosing Dyslexia in Early School-Aged Children Using the LSTM Network and Eye Tracking Technology |
Автори: | Gomolka, Z. Zeslawska, E. Czuba, B. Kondratenko, Y. |
Ключові слова: | recognition of dyslexia eye tracking for attention analysis LSTM neural network BVRT test |
Дата публікації: | 2024 |
Видавництво: | MDPI |
Короткий огляд (реферат): | Dyslexia, often referred to as a specific reading disability, affects many students around the world. It is a neurological disorder that affects the ability to recognise words, and it causes difficulties in writing and reading comprehension. Previous computer-based methods for the automatic detection of dyslexia in children have had low efficiency due to the complexity of the test administration process and the low measurement reliability of the attention measures used. This paper proposes the use of a student’s mobile device to record the spatio-temporal trajectory of attention, which is then analysed by deep neural network long short-term memory (LSTM). The study involved 145 participants (66 girls and 79 boys), all of whom were children aged 9 years. The input signal for the neural network consisted of recorded observation sessions, which were packets containing the child’s spatio-temporal attention trajectories generated during task performance. The training set was developed using stimuli from Benton tests and an expert opinion from a specialist in early childhood psychology. The coefficients of determination of Unknown node type: fontUnknown node type: fontUnknown node type: fontUnknown node type: font were obtained for the proposed model, giving an accuracy of 97.7% for the test set. The ease of implementation of this approach in school settings and its non-stressful nature make it suitable for use with children of different ages and developmental stages, including those who have not yet learned to read. This enables early intervention, which is essential for effective educational and emotional support for children with dyslexia. |
Опис: | Gomolka, Z., Zeslawska, E., Czuba, B., & Kondratenko, Y. (2024). Diagnosing Dyslexia in Early School-Aged Children Using the LSTM Network and Eye Tracking Technology. Applied Sciences, 14 (17), art. no. 8004. DOI: 10.3390/app14178004 |
URI (Уніфікований ідентифікатор ресурсу): | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85203622243&doi=10.3390%2fapp14178004&partnerID=40&md5=047c1 https://www.mdpi.com/2076-3417/14/17/8004 https://dspace.chmnu.edu.ua/jspui/handle/123456789/2481 |
ISSN: | 2076-3417 |
Розташовується у зібраннях: | Публікації науково-педагогічних працівників ЧНУ імені Петра Могили у БД Scopus |
Файли цього матеріалу:
Файл | Опис | Розмір | Формат | |
---|---|---|---|---|
Diagnosing Dyslexia in Early School-Aged Children Using the.pdf | 8.79 MB | Adobe PDF | Переглянути/Відкрити | |
Gomolka, Z., Zeslawska, E., Czuba, B., Kondratenko, Y..pdf | 60.28 kB | Adobe PDF | Переглянути/Відкрити |
Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.