Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: https://dspace.chmnu.edu.ua/jspui/handle/123456789/1883
Titel: Cross-Domain Reconfigurable GAN with Fuzzy Components for Anomaly Detection
Autoren: Striuk, O.
Kondratenko, Y.
Stichwörter: anomaly detection
artificial intelligence
artificial neural networks
deep learning
fuzzy logic
GANs
machine learning
Erscheinungsdatum: 2023
Herausgeber: IEEE
Zusammenfassung: Anomaly detection remains a critical task in various domains, including cybersecurity and healthcare monitoring. Traditional approaches often rely on low-level machine learning and statistical methods, which may struggle to capture complex, multidimensional data patterns and adapt to evolving anomalies. In recent years, generative adversarial networks (GANs) have demonstrated promising potential for anomaly detection due to their ability to learn the underlying data distribution. This paper presents an anomaly detection system, which leverages a GAN-based model integrated with fuzzy logic components. We explore the integration of the GAN architecture with auxiliary components to enhance the performance and robustness of the anomaly detection system. This approach endeavors to explore the practical potential of GAN-based models in the field of anomaly detection and paves the way for future research in this rapidly evolving domain.
Beschreibung: Striuk, O., & Kondratenko, Y. (2023). Cross-Domain Reconfigurable GAN with Fuzzy Components for Anomaly Detection. 2023 13th International Conference on Dependable Systems, Services and Technologies, DESSERT 2023. Athens. DOI: 10.1109/DESSERT61349.2023.10416521
URI: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85185825411&doi=10.1109%2fDESSERT61349.2023.10416521&partne
https://ieeexplore.ieee.org/document/10416521
https://dspace.chmnu.edu.ua/jspui/handle/123456789/1883
ISBN: 979-835039611-9
Enthalten in den Sammlungen:Публікації науково-педагогічних працівників ЧНУ імені Петра Могили у БД Scopus

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
Striuk, O., Kondratenko, Y.pdf59.87 kBAdobe PDFÖffnen/Anzeigen


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt, soweit nicht anderweitig angezeigt.