Please use this identifier to cite or link to this item: https://dspace.chmnu.edu.ua/jspui/handle/123456789/3065
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSidenko, I.-
dc.contributor.authorKondratenko, Y.-
dc.contributor.authorSkarga-Bandurova, I.-
dc.contributor.authorSaliutin, M.-
dc.date.accessioned2026-01-09T13:13:17Z-
dc.date.available2026-01-09T13:13:17Z-
dc.date.issued2025-
dc.identifier.isbn978-874380096-5, 978-874380097-2-
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-105026200370&partnerID=40&md5=ef1480c67f6dd5eeb09a27cc13b640a2-
dc.identifier.urihttps://dspace.chmnu.edu.ua/jspui/handle/123456789/3065-
dc.descriptionSidenko, I., Kondratenko, Y., Skarga-Bandurova, I., Zhukov, Y., & Saliutin, M. (2025). Artificial Intelligence Technologies for Efficient Solving of Recognition Tasks. Artificial Intelligence: Achievements and Recent Developments, 145–196.uk_UA
dc.description.abstractThis chapter investigates the practical application of artificial intelligence (AI) technologies in addressing various recognition challenges across multiply sectors. By focusing on convolutional and recurrent neural networks, we analyze their efficacy in tasks ranging from medical diagnosis and transportation logistics to military operations, and beyond. Through an analysis of successful implementations, this study highlights how AI enhances classification and recognition capabilities in real-world scenarios, specifically how AI is changing the future of security and remote sensing through the automation of recognition tasks. Additionally, we examine future prospects for AI development, identifying potential advancements and improvements to current technologies. This analysis contributes to the ongoing discourse on practical applications and future directions of AI technology, offering insights into how it can effectively solve complex recognition problems.uk_UA
dc.language.isoenuk_UA
dc.publisherRiver Publishersuk_UA
dc.subjectArtificial intelligenceuk_UA
dc.subjectBuilding segmentationuk_UA
dc.subjectConvolutional and recurrent neural networksuk_UA
dc.subjectLandmines identificationuk_UA
dc.subjectMask recognitionuk_UA
dc.subjectMilitary objects classificationuk_UA
dc.titleArtificial Intelligence Technologies for Efficient Solving of Recognition Tasksuk_UA
dc.typeBook chapteruk_UA
Appears in Collections:Публікації науково-педагогічних працівників ЧНУ імені Петра Могили у БД Scopus

Files in This Item:
File Description SizeFormat 
Sidenko, I., Kondratenko, Y., Skarga-Bandurova, I., Zhukov, Y., & Saliutin, M.pdf97.29 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.