Please use this identifier to cite or link to this item: https://dspace.chmnu.edu.ua/jspui/handle/123456789/2911
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKalinina, I.-
dc.contributor.authorGozhyj, A.-
dc.contributor.authorBidyuk, P.-
dc.contributor.authorGozhyi, V.-
dc.contributor.authorKorobchynskyi, M.-
dc.contributor.authorNadraga, V.-
dc.date.accessioned2025-08-19T07:16:26Z-
dc.date.available2025-08-19T07:16:26Z-
dc.date.issued2025-
dc.identifier.isbn978-3-031-88482-5 print-
dc.identifier.isbn978-3-031-88483-2 online-
dc.identifier.issn23674512-
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-105010173791&doi=10.1007%2f978-3-031-88483-2_11&partnerID=40&md5=1a6dc82bd99bf48b26f7ca453d52a9ff-
dc.identifier.urihttps://link.springer.com/chapter/10.1007/978-3-031-88483-2_11-
dc.identifier.urihttps://dspace.chmnu.edu.ua/jspui/handle/123456789/2911-
dc.descriptionKKalinina, I., Gozhyj, A., Bidyuk, P., Gozhyi, V., Korobchynskyi, M., & Nadraga, V. (2025). A Systematic Approach to Data Normalization and Standardization in Machine Learning Problems. In: Babichev, S., Lytvynenko, V. (Eds) Lecture Notes on Data Engineering and Communications Technologies, 244, 206 – 219. Springer, Cham. DOI: 10.1007/978-3-031-88483-2_11uk_UA
dc.description.abstractThe article presents a systematic approach to normalization and standardization at the stage of data analysis and pre-processing when solving machine learning tasks. Data normalization is a necessary initial stage of data processing in the systematic use of many multivariate statistical methods. Features of the system approach to normalization are described. The stages of the system approach are defined. At the first stage, the initial data set, the machine learning task and the modeling method are analyzed for the need for normalization. At the second stage, the type of data distribution is determined and normality is checked. At the third stage, a check is carried out for the presence of emissions in the set. At the fourth stage, data is normalized. The classification of normalization methods is given. The main methods of normalization are described and the features of linear and non-linear normalization methods are considered. An example of systematic use of normalization methods is given. The importance and effectiveness of the system approach to solving normalization tasks at the stage of data analysis and pre-processing of machine learning tasks is proven.uk_UA
dc.language.isoenuk_UA
dc.publisherSpringer Science and Business Media Deutschland GmbHuk_UA
dc.subjectdata normalization and standardizationuk_UA
dc.subjectlinear and non-linear normalizationuk_UA
dc.subjectmachine learninguk_UA
dc.subjectsystematic approachuk_UA
dc.titleSystematic Approach to Data Normalization and Standardization in Machine Learning Problemsuk_UA
dc.typeBook chapteruk_UA
Appears in Collections:Публікації науково-педагогічних працівників ЧНУ імені Петра Могили у БД Scopus

Files in This Item:
File Description SizeFormat 
Kalinina I., Gozhyj A., Bidyuk P., Gozhyi V., Korobchynskyi M., & Nadraga V..txt588 BTextView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.