Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: https://dspace.chmnu.edu.ua/jspui/handle/123456789/2816
Langanzeige der Metadaten
DC ElementWertSprache
dc.contributor.authorVladov, S.-
dc.contributor.authorVysotska, V.,-
dc.contributor.authorSokurenko, V.-
dc.contributor.authorMuzychuk, O.-
dc.contributor.authorGozhyj, A.-
dc.contributor.authorKalinina, I.-
dc.date.accessioned2025-06-05T13:36:24Z-
dc.date.available2025-06-05T13:36:24Z-
dc.date.issued2024-
dc.identifier.isbn979-833154262-7-
dc.identifier.issn27663655-
dc.identifier.urihttps://www.scopus.com/record/display.uri?eid=2-s2.0-105005832238&origin=SingleRecordEmailAlert&dgcid=raven_sc_affil_ru_ru_email&txGid=1eac3e55846b0f80f4236fe8a0c067b2-
dc.identifier.urihttps://ieeexplore.ieee.org/document/10982674-
dc.identifier.urihttps://dspace.chmnu.edu.ua/jspui/handle/123456789/2816-
dc.descriptionVladov, S., Vysotska, V., Sokurenko, V., Muzychuk, O., Gozhyj, A., & Kalinina, I. (2024). Defects Diagnostics Method Based on Statistical Big Data Analisis of Measured Parameters. International Scientific and Technical Conference on Computer Sciences and Information Technologies. IEEE. Lviv. DOI: 10.1109/CSIT65290.2024.10982674uk_UA
dc.description.abstractIn this work, the proposed method effectively diagnoses defects by narrowing down suspected units, although it often underestimates the defect's numerical value. Reliability improves with more experimental data, aiding in identifying malfunctions, though false results can occur. Further research is needed on reliability's dependence on measured parameters and discretization degree. Diagnostics should consider different engine modes and note the linear model's error of up to 0.3% against an acceptable variation of ± 2.5%. Reducing error requires narrowing the variation range, and expanding linearization applicability involves considering the Taylor expansion's second term. These results suggest limitations in other diagnostic methods, as parameter combinations can closely match experimental data.uk_UA
dc.language.isoenuk_UA
dc.publisherIEEEuk_UA
dc.subjectdefectuk_UA
dc.subjectdiscretizationuk_UA
dc.subjecthelicopters turboshaft enginesuk_UA
dc.subjectthermogas-dynamic parametersuk_UA
dc.titleDefects Diagnostics Method Based on Statistical Big Data Analisis of Measured Parametersuk_UA
dc.typeThesisuk_UA
Enthalten in den Sammlungen:Публікації науково-педагогічних працівників ЧНУ імені Петра Могили у БД Scopus

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
Vladov, S., Vysotska, V., Sokurenko, V., Muzychuk, O., Gozhyj, A., Kalinina, I..pdf59.63 kBAdobe PDFÖffnen/Anzeigen


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt, soweit nicht anderweitig angezeigt.