Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: https://dspace.chmnu.edu.ua/jspui/handle/123456789/2665
Langanzeige der Metadaten
DC ElementWertSprache
dc.contributor.authorMats, A.-
dc.contributor.authorMitryasova, O.-
dc.contributor.authorSalamon, I.-
dc.contributor.authorKochanek, A.-
dc.date.accessioned2025-02-21T12:15:07Z-
dc.date.available2025-02-21T12:15:07Z-
dc.date.issued2025-
dc.identifier.issn27197050-
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85217483551&doi=10.12912%2f27197050%2f200307&partnerID=40&md-
dc.identifier.urihttps://dspace.chmnu.edu.ua/jspui/handle/123456789/2665-
dc.descriptionMats, A., Mitryasova, O., Salamon, I., & Kochanek, A. (2025). Atmospheric air temperature as an integrated indicator of climate change. Ecological Engineering and Environmental Technology, 26 (3), 352-360. DOI: 10.12912/27197050/200307uk_UA
dc.description.abstractAtmospheric air temperature serves as a fundamental indicator of climate change, directly influencing ecosystems, water resources, and human livelihoods. The study of temperature trends is essential for understanding the impact of global warming as well as developing strategies for environmental sustainability and climate adaptation. The purpose of the research was to study the dynamics of atmospheric air temperature as one of integrated indicator of climate change and the main factors influencing the state of water resources on the example of the territory of Mykolaiv city and the Mykolaiv region. The study methods involved observations, comparisons and analogies, analysis, synthesis, and generalization. Also, the research was carried out using Microsoft Exсel and mathematical modeling through the use of regression analysis. The method involved constructing statistical models to predict the dependent variable based on one or more independent variables. The findings derived from regression analysis were visualized through scatterplots, regression lines, and confidence intervals, allowing for a clear interpretation of trends and patterns. Over the period 1991–2024, the average annual temperature in the Mykolaiv region increased by 1.2 °C, and its growth rate is three times higher than the global rate. The highest temperature was recorded in 1998 (40.1 °C), the lowest in 2006 (−25.9 °C), and recent years (2023–2024) have become the warmest in the entire period of observations. The summer months show the greatest temperature extremes: the average maximum temperature in August reaches +29.6 °C, and the number of hot days is steadily increasing every year. Therefore, the data indicate a steady increase in days with temperatures above 25 °C during the analyzed period. This may be the result of global warming and climate change. However, in some years, the number of hot days may be lower or higher than trend values, which indicates natural fluctuations and the possible influence of other climatic factors. In general, the graph shows a clear trend towards an increase in the number of hot days, which is an important indicator of climate change in the region. .uk_UA
dc.language.isoenuk_UA
dc.publisherPolskie Towarzystwo Inzynierii Ekologicznej (PTIE)uk_UA
dc.subjectatmospheric air temperatureuk_UA
dc.subjectclimate changeuk_UA
dc.subjectenvironmental changeuk_UA
dc.subjectsustainable developmentuk_UA
dc.titleAtmospheric air temperature as an integrated indicator of climate changeuk_UA
dc.typeArticleuk_UA
Enthalten in den Sammlungen:Публікації науково-педагогічних працівників ЧНУ імені Петра Могили у БД Scopus

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
Mats, A., Mitryasova, O., Salamon, I., Kochanek, A.pdf59.01 kBAdobe PDFÖffnen/Anzeigen


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt, soweit nicht anderweitig angezeigt.