Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: https://dspace.chmnu.edu.ua/jspui/handle/123456789/2471
Langanzeige der Metadaten
DC ElementWertSprache
dc.contributor.authorCongxiang, L.-
dc.contributor.authorKozlov, O.-
dc.contributor.authorKondratenko, G.-
dc.contributor.authorAleksieieva, A.-
dc.date.accessioned2024-09-23T07:01:17Z-
dc.date.available2024-09-23T07:01:17Z-
dc.date.issued2024-
dc.identifier.isbn978-877004693-0-
dc.identifier.isbn978-877004692-3-
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85202989865&partnerID=40&md5=c66fb0c5dff18775d1ff2460a7181fbe-
dc.identifier.urihttps://dspace.chmnu.edu.ua/jspui/handle/123456789/2471-
dc.descriptionCongxiang, L., Kozlov, O., Kondratenko, G., & Aleksieieva, A. (2024). Decision support system for maintenance planning of vortex electrostatic precipitators based on IoT and AI techniques. Research Tendencies and Prospect Domains for AI Development and Implementation, 87-108.uk_UA
dc.description.abstractThis research addresses the issue of introducing an intelligent decision support system (DSS) for efficient maintenance planning of vortex electrostatic precipitators (VEPs) in industrial settings. Leveraging the integration of Internet of Things (IoT) and artificial intelligence (AI) techniques, the proposed DSS aims to significantly reduce equipment downtime through the optimization of cleaning modes and schedules. In light of the increasing importance of production efficiency and continuous improvement of intelligent technologies, this study becomes particularly relevant as it offers a comprehensive solution for optimizing VEP performance using AI. The intelligent DSS, created based on a hierarchical approach and utilizing two fuzzy subsystems, proves to be a valuable tool, providing operators with essential recommendations based on real-time VEP conditions. By dynamically adjusting cleaning parameters, including intensity, duration, and time until mandatory cleaning, the system demonstrates adaptability and efficiency in maintenance planning, contributing to sustained reliability and effectiveness of VEPs in diverse industrial environments.uk_UA
dc.language.isoenuk_UA
dc.publisherRiver Publishersuk_UA
dc.subjectArtificial intelligenceuk_UA
dc.subjectFuzzy decision support systemuk_UA
dc.subjectInternet of Thingsuk_UA
dc.subjectMaintenance planninguk_UA
dc.subjectVortex electrostatic precipitatoruk_UA
dc.titleDecision support system for maintenance planning of vortex electrostatic precipitators based on IoT and AI techniquesuk_UA
dc.typeBook chapteruk_UA
Enthalten in den Sammlungen:Публікації науково-педагогічних працівників ЧНУ імені Петра Могили у БД Scopus

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
Congxiang, L., Kozlov, O., Kondratenko, G., Aleksieieva, A..pdf59.66 kBAdobe PDFÖffnen/Anzeigen


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt, soweit nicht anderweitig angezeigt.