Please use this identifier to cite or link to this item: https://dspace.chmnu.edu.ua/jspui/handle/123456789/1780
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChuiko, G.-
dc.contributor.authorDvornik, O.-
dc.contributor.authorDarnapuk, Y.-
dc.contributor.authorHoncharov, D.-
dc.contributor.authorYaremchuk, O.-
dc.date.accessioned2024-02-22T09:26:59Z-
dc.date.available2024-02-22T09:26:59Z-
dc.date.issued2023-
dc.identifier.isbn979-835035805-6-
dc.identifier.issn27704262-
dc.identifier.urihttps://ieeexplore.ieee.org/document/10348674-
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85184829246&doi=10.1109%2fIDAACS58523.2023.10348674&partnerID-
dc.identifier.urihttps://dspace.chmnu.edu.ua/jspui/handle/123456789/1780-
dc.descriptionChuiko, G., Dvornik, O., Darnapuk, Y., Honcharov, D., & Yaremchuk, O. (2023). Asleep Adults' Breathing Patterns via Data Mining of Electromyograms. Proceedings of the IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, IDAACS, 550-554. IEEE. Dortmund. DOI: 10.1109/IDAACS58523.2023.10348674uk_UA
dc.description.abstractA study used Machine Learning to identify potential sleep disturbances by analyzing abdominal electromyograms and breathing patterns in sleeping adults. The median and peak values of envelopes of electromyograms have been used as diagnostic signs of breathing patterns. The report suggests using visual classifiers, like decision trees, to make the diagnostic process more accessible for clinicians unfamiliar with Machine Learning. The duly preprocessed abdominal electromyograms allow the forecast of the breathing pattern by decision trees with a precision of up to 0.848.uk_UA
dc.description.sponsorshipet al.European Partnership for Project and Innovation Management (EuroPIM)Fachhochschule Dortmund - University of Applied Sciences and ArtsResearch Institute for Intelligent Computer Systemsruhrvalley Cluster e.V. The DeepTech Innovation NetworkWest Ukrainian National Universityuk_UA
dc.language.isoenuk_UA
dc.publisherInstitute of Electrical and Electronics Engineers Inc.uk_UA
dc.subjectbreathing patternsuk_UA
dc.subjectdata mininguk_UA
dc.subjectdecision-treeuk_UA
dc.subjectelectromyogramuk_UA
dc.subjectmachine learninguk_UA
dc.titleAsleep Adults' Breathing Patterns via Data Mining of Electromyogramsuk_UA
dc.typeArticleuk_UA
Appears in Collections:Публікації науково-педагогічних працівників ЧНУ імені Петра Могили у БД Scopus

Files in This Item:
File Description SizeFormat 
Chuiko, G., Dvornik, O., Darnapuk, Y., Honcharov, D., Yaremchuk, O..pdf59.51 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.