Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: https://dspace.chmnu.edu.ua/jspui/handle/123456789/1440
Langanzeige der Metadaten
DC ElementWertSprache
dc.contributor.authorNechakhin, V.-
dc.contributor.authorKalinina, I.-
dc.contributor.authorGozhyj, A.-
dc.date.accessioned2023-12-28T08:50:48Z-
dc.date.available2023-12-28T08:50:48Z-
dc.date.issued2023-
dc.identifier.isbn979-835036046-2-
dc.identifier.issn27663655-
dc.identifier.urirecord.uri-
dc.identifier.urihttps://ieeexplore.ieee.org/document/10324254-
dc.identifier.urihttps://dspace.chmnu.edu.ua/jspui/handle/123456789/1440-
dc.descriptionNechakhin, V., Kalinina, I., & Gozhyj, A. (2023). Hyperparameter Optimization of LSTM MPPT Controller for Solar Power Plants. International Scientific and Technical Conference on Computer Sciences and Information Technologies. IEEE. Lviv. doi: 10.1109/CSIT61576.2023.10324254uk_UA
dc.description.abstractEfficient tracking of the maximum power point (MPP) is crucial for optimizing energy extraction in solar power plants. This paper focuses on hyperparameter optimization of Long Short-Term Memory (LSTM) neural networks for MPP tracking control. Traditional and emerging MPP tracking techniques are reviewed, and the potential of LSTM-based controllers is explored. The study rigorously investigates the impact of hyperparameters such as learning rate, layers, hidden units, and dropout rate on the controller's efficiency. By navigating the hyperparameter space, the research aims to uncover optimal configurations that enhance MPP tracking precision and performance in solar power plants.uk_UA
dc.language.isoenuk_UA
dc.publisherIEEEuk_UA
dc.subjectHyperparameter Optimizationuk_UA
dc.subjectLong Short-Term Memory (LSTM) Neural Networksuk_UA
dc.subjectMaximum Power Point Trackinguk_UA
dc.subjectRenewable Energy Controlleruk_UA
dc.subjectSolar Power Plantsuk_UA
dc.titleHyperparameter Optimization of LSTM MPPT Controller for Solar Power Plantsuk_UA
dc.typeThesisuk_UA
Enthalten in den Sammlungen:Публікації науково-педагогічних працівників ЧНУ імені Петра Могили у БД Scopus

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
Nechakhin, V., Kalinina, I., Gozhyj, A..pdf59.65 kBAdobe PDFÖffnen/Anzeigen


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt, soweit nicht anderweitig angezeigt.