Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: https://dspace.chmnu.edu.ua/jspui/handle/123456789/1307
Повний запис метаданих
Поле DCЗначенняМова
dc.contributor.authorStriuk, O.-
dc.contributor.authorKondratenko, Y.-
dc.date.accessioned2023-10-19T11:28:07Z-
dc.date.available2023-10-19T11:28:07Z-
dc.date.issued2023-
dc.identifier.issn17276209-
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85173639757&doi=10.47839%2fijc.22.3.3223&partnerID=40&md5=6decdDOI: 10.47839/ijc.22.3.3223-
dc.identifier.urihttps://computingonline.net/files/journals/1/archieve/IJC_2023_22_3_02.pdf-
dc.identifier.urihttps://dspace.chmnu.edu.ua/jspui/handle/123456789/1307-
dc.descriptionStriuk, O., & Kondratenko, Y. (2023). Optimization Strategy for Generative Adversarial Networks Design. International Journal of Computing, 22(3), 292-301. doi: 10.47839/ijc.22.3.3223uk_UA
dc.description.abstractGenerative Adversarial Networks (GANs) are a powerful class of deep learning models that can generate realistic synthetic data. However, designing and optimizing GANs can be a difficult task due to various technical challenges. The article provides a comprehensive analysis of solution methods for GAN performance optimization. The research covers a range of GAN design components, including loss functions, activation functions, batch normalization, weight clipping, gradient penalty, stability problems, performance evaluation, mini-batch discrimination, and other aspects. The article reviews various techniques used to address these challenges and highlights the advancements in the field. The article offers an up-to-date overview of the state-of-the-art methods for structuring, designing, and optimizing GANs, which will be valuable for researchers and practitioners. The implementation of the optimization strategy for the design of standard and deep convolutional GANs (handwritten digits and fingerprints) developed by the authors is discussed in detail, the obtained results confirm the effectiveness of the proposed optimization approach.uk_UA
dc.language.isoenuk_UA
dc.publisherResearch Institute of Intelligent Computer Systemsuk_UA
dc.subjectartificial intelligenceuk_UA
dc.subjectdeep learninguk_UA
dc.subjectdesignuk_UA
dc.subjectgenerative adversarial networkuk_UA
dc.subjectloss functionuk_UA
dc.subjectmachine learninguk_UA
dc.subjectoptimizationuk_UA
dc.titleOptimization Strategy for Generative Adversarial Networks Designuk_UA
dc.typeArticleuk_UA
Розташовується у зібраннях:Публікації науково-педагогічних працівників ЧНУ імені Петра Могили у БД Scopus

Файли цього матеріалу:
Файл Опис РозмірФормат 
Striuk, O., Kondratenko, Y..pdf63.22 kBAdobe PDFПереглянути/Відкрити
Optimization Strategy for Generative.pdf1.15 MBAdobe PDFПереглянути/Відкрити


Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.