
INFORMATION AND CONTROL SYSTEMS:
INFORMATION TECHNOLOGIES

10 TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 3/2(77), 2024

ISSN 2664-9969

UDC 004.042:004.623
DOI: 10.15587/2706-5448.2024.306435

ANALYSIS OF METHODS AND
ALGORITHMS FOR PROCESSING
UNSTRUCTURED TEXT DATA BASED
ON JSON TECHNOLOGY

The object of research is the process of automating systems for structuring data from several sources. The
subject of the research is methods and algorithms for implementing a complete system for automated and parallel
processing, validation and structuring of data. One of the most problematic areas is the merging of databases with
different structures and several common fields into a generalized structure. The research was aimed at developing
a system to increase the efficiency of automation of big data processing.

As a result of the work, optimization methods were studied, the influence of their internal parameters on the
operation of algorithms was analyzed, their main advantages and disadvantages were determined, and software
was developed in which the corresponding methods were implemented. An algorithm for structuring data before
processing has been obtained. Data structuring is achieved by performing the «mapping» operation. Mapping can
take place by indexes of already cleaned data or using a defined dictionary with a given set of keys, which allows
not to care about the sequence of storing values and their possible shift.

The practical significance of the developed system lies in the improvement of methods of collecting and process-
ing information for the purpose of its further validation, cleaning and accumulation in the following categories:
geographic addresses and geo-coordinates, validation and automated addition of a mobile phone number to the
international format, processing of car numbers (in modern and outdated format), VIN code of the engine and car
brand, validation of urls of social networks, passport data and processing of personal data. Compared to similar
methods for processing large volumes of data, the possibility of splitting the input file or stream into separate
parts was used, the cleaned data from which is combined at the end of the system operation. Thanks to this, it is
possible to process data whose size exceeds the available volume of the device’s RAM, and the method of working
with loosely structured text files in CSV format has been improved.

Keywords: validation, intelligent system, unstructured data, JSON, CSV, crowding, ETL, ELT, automated system.

Yehor Kucherenko,
Inessa Kulakovska

© The Author(s) 2024

This is an open access article

under the Creative Commons CC BY license

How to cite

Kucherenko, Ye., Kulakovska, I. (2024). Analysis of methods and algorithms for processing unstructured text data based on JSON technology. Technology

Audit and Production Reserves, 3 (2 (77)), 10–18. doi: https://doi.org/10.15587/2706-5448.2024.306435

Received date: 25.04.2024

Accepted date: 18.06.2024

Published date: 21.06.2024

1.  Introduction

In order to process huge amounts of data, Facebook has
developed a proprietary method known as Presto. There are
various organized, unstructured, and different data file formats
available, such as CSV, Image File Format, plain text, binary,
XML, JSON, HTML, Excel, PDF, and others, from which it
is possible to extract data based on requirements. Data ma
nagement and organization is more important than ever before,
because today the whole world is data-driven and only those
organizations that have realized the huge impact of data ana-
lytics in time dominate and lead the information industry [1].

For the purpose of storing data and information, XML
is used as a standard format in several organizations [2].
There are various reasons behind XML as a data exchange
format on the Internet. For example, XHTML has been
defined as a formal XML format that is successfully parsed
by most HTML parsers [3].

JSON (JavaScript Object Notation) is a lightweight data
exchange format. It is easy to read and write data that
is generated and analyzed by computers. It is a language-
independent text script that works on the syntax of the
C language family [4].

The aim of this paper is to study the basics and features
of creating an autonomous system for processing large
amounts of data. In order to implement the software, it
is necessary to analyze arrays of information from diffe
rent subject domains and identify their features for the
subsequent creation of rules for validation and process-
ing of input values. The following steps are required for
implementation:

–	 analyze methods and systems for automated process-
ing of large data sets;
–	 develop principles of automatic partitioning and pro-
cessing of text files whose size exceeds the available
RAM capacity;

INFORMATION AND CONTROL SYSTEMS:
INFORMATION TECHNOLOGIES

11TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 3/2(77), 2024

ISSN 2664-9969

–	 provide a definition and justification of the basic prin-
ciples and methods of working with poorly structured
text files in the CSV (Comma Separated Value) format.
Data reading and initial preparation is a critical phase in

data processing. It’s here that the data structure is established,
subject to transformation. Attributes like character encoding
and separators are defined during this stage. Structural and
technical constraints, such as limits on the available ROM
space, are also defined at this stage. When reading data,
an important indicator is the format of the input file – for
example, a simple text file or a SQL dump, depending on
which it is necessary to use different processing techniques,
which further affects the speed of the system.

2.  Materials and Methods

The object of research is the process of automating
systems for structuring data from multiple sources. The
subject of research is the methods and algorithms for imple-
menting an integrated system for automated and parallel
processing, validation and structuring of data.

The research was aimed at developing a system to im-
prove the efficiency of automation of big data processing.
As a result of the work, the optimization methods were
investigated, the impact of their internal parameters on the
operation of the algorithms was analyzed, their main advan-
tages and disadvantages were identified, and software was
developed in which the relevant methods were implemented.

To achieve the set goal, the following tasks were solved.
The analysis of existing methods, models and algorithms for
the implementation of a complete system for automated and
parallel processing, validation and structuring of data, taking
into account various data formats and possible associated
uncertainties, to solve the tasks of organizing large data,
was performed. The method of synthesis of Json processing
information technologies was used to solve the problems
of data analysis and modeling in the presence of various
formats of data sources. A method of data filtering, their
normalization and standardization has been developed based
on a systematic combination of data transformation methods,
a data supplement processing method has been implemented
that identifies gaps in data, reveals patterns of their oc-
currence and forms data sets without gaps.

A laptop with an Intel Core i5 processor and 8 GB
of RAM was used for the experiments. This equipment
provided sufficient performance to process large amounts
of data, although it had its limitations. The software con-
sisted of Python 3 and virtualenv, which allowed to create
isolated environments for executing scripts and ensured
stability and controllability of program code execution.
Using virtualenv was critical to avoid conflicts between
libraries and dependencies.

Designed and tested tools for solving applied tasks to
increase the efficiency of automation of big data process-
ing and decision-making in various fields, confirming the
reliability of scientific and practical results.

The main theoretical method was the use of hashing
to filter data, which allowed for efficient processing of
large volumes of information. Hashing was used to speed
up searches and reduce the amount of memory needed to
store data. The experiments were conducted under condi-
tions of limited RAM, which was smaller than the input
volume of data, which required optimization of the use of
resources and efficient memory management. This created

certain challenges, but also made it possible to test the
effectiveness of the proposed methods in real conditions.
This approach allowed to obtain results that show how it is
possible to work with large data sets on limited hardware
resources, which is important for the further development
of data processing methods.

3.  Results and Discussion

3.1.  Using programming technologies in data mapping.
It is convenient to represent the abstraction of input data
mapping using the concepts of OOP (Object Oriented
Programming) and classes. To simplify the work with data,
it is possible to create a «Unit» class.

An ETL (Extract, Transform, Load) unit is an object that
has the following properties:

–	 unit service name – a string field – used at the stage
of debugging and logging. For example, a unit created
for processing and validating mobile phone numbers can
have the service name «Phone»;
–	 data conversion category – phone numbers, full names,
links to web resources – data and other categories have
different methods and algorithms for processing raw input
data. The category name specified when creating a unit
object can be used as a key to the dictionary that will
be specified at the stage of input data mapping;
–	 a subcategory in this category;
–	 a list of called functions for transforming input data –
in a given sequence of list items;
–	 a dictionary with data to clean the string before con-
version.

3.1.1.  Features of the use of software architecture. Ac-
counting for key fields. In some cases, when operating an
ETL system, it is important to take into account such a fac-
tor as key fields. The peculiarity of key fields (columns)
within a single row is that there is a predefined condi-
tion (combinatorial) under which the row that contains
either a certain number of key fields or a combination of
them is considered valid after cleansing. There are two ap-
proaches to solving this problem [5–7].

1.	 Define a list of dictionary keywords in advance and
then make combinations of a certain length from them.
This method has a significant drawback: if the final list of
dictionaries is large and/or the number of key fields is large
enough to produce long chains of combinations, the full
search takes a long time [8, 9].

2.	 Keep track of key fields at the processing stage – using
the key field counter for each row. During the processing
of each new row, the key field counter resets to zero. Then,
each column is handled following ETL rules [10, 11]. If the
processed value aligns with business logic and the ETL unit
marks it as a key, the key field counter increments. If the
key field counter is greater than one after processing all
columns in a row, the row is considered valid. This approach
allows to add to the final set of rows only valid rows that
have exactly the key fields, which avoids situations when
the final row after processing contains non-empty columns,
but they are not key fields, and the row is useless.

3.1.2.  Flexibility of working with ETL units. The basis
for working with ETL units is a predefined dictionary that
contains ETL unit objects as values. The advantages of pre-
created objects are as follows. Unambiguity – it is assumed

INFORMATION AND CONTROL SYSTEMS:
INFORMATION TECHNOLOGIES

12 TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 3/2(77), 2024

ISSN 2664-9969

that the objects themselves will not change, but it is possible
to expand the list of methods used by this object [7, 11].

Consider the parameters of its constructor.
The first parameter is the service name of the unit. It is

used for two purposes:
1.	 As service information during logging and debugging.
2.	 As a key for the dictionary of cleared columns.
The second parameter is the value of the enumeration

class – data categories. It is the use of the structure of nested
dictionaries (subcategories in a category) with lists of functions
attached to each subcategory that allows to maintain the
flexibility of using an ETL unit by expanding or reducing the
list of functions to be called, and the functions themselves
can (and should) be located in separate external files and
imported into the file in which this dictionary is defined, which
allows to radically change their behaviour without changing
the structure of the dictionary and the ETL units themselves.

The third parameter is the name of a subcategory in a given
category. A subcategory is a dictionary key in the dictionary
of a given category, which is already used to retrieve a list of
functions for cleaning. As a rule, the service name of the unit
and the name of the subcategory coincide for logical reasons.

The fourth parameter is the character dictionary that is
used when cleaning the input data for this unit.

3.1.3.  The generalized structure of the units. The main
idea is as follows:

1.	 A unit is created once in an external file and remains
unchanged. To work with a unit, it is imported and called
by the specified key in the unit dictionary.

2.	 The unit dictionary remains unchanged and is located
in an external file, which ensures the readability of the
rest of the code.

3.	 When creating a unit, it is based on the concepts of
category and subcategory.

4.	 All categories and their subcategories are rigidly de-
fined and predefined in the form of a hierarchical structure
of dictionaries – in an external file.

5.	 The only changeable element of ETL units is the list
of functions that are called for a given subcategory. This
allows to change only the number of items in the list for
a given subcategory – without affecting the logic of the unit
class or the initial dictionary of the created unit objects.

The general structure of calls: call an etl unit by key -> ac-
cess the constant dictionary of pre-created units -> access
the constant hierarchical dictionary of categories and their
subcategories -> get a list of functions to be called for
a given category and subcategory (and, accordingly, when
using this unit), Fig. 1.

Advantages of a unit class over other data structures.
The advantage of using a unit object over using a regular
dictionary should be noted right away:

–	 the use of a dictionary does not allow to keep track
of key fields – without additional auxiliary data struc-
tures (lists or other dictionaries);
–	 the use of a dictionary does not allow to immedia
tely specify a dictionary of unwanted characters to
be used for this column (without additional auxiliary
data structures (lists or other dictionaries));
–	 the use of a dictionary – without a two-level bind-
ing structure (a dictionary of units and a dictionary
of categories) – does not allow for a clear division
of data into categories, which complicates the work
with the code when working with a large number of
columns (entities).

3.1.4.  The ability to disable the unit. In the unit class –
there is a field – «unit_is_disabled» – set to «False» by
default: «self.unit_is_disabled=False». This field allows
to «disable» a unit before using it, before binding it to
a column, which in turn allows to do the following actions:

1.	 Keep the specified column unchanged, i. e., do not
process it – if necessary.

2.	 Continue to use the service name of the unit as
a key for the dictionary of the cleared columns – during
data processing.

Fig. 1. An example of a function call chain for an ETL unit

INFORMATION AND CONTROL SYSTEMS:
INFORMATION TECHNOLOGIES

13TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 3/2(77), 2024

ISSN 2664-9969

Since all unit objects are pre-created and stored in the
dictionary, to «disable» a unit, it is necessary to access
the dictionary using the required key and set the value of
the «unit_is_disabled» field – for the unit – to «True».

3.1.5.  Partially disable a unit. This option of disabling
a unit allows to leave the column value unchanged – ex-
cept for removing characters from the list of bad characters.

It is also important to note that if there are a large
number of columns in the input file (and, accordingly, units
to clean), it is inconvenient to manually set the partial dis-
able option for each unit. That is why it is advisable to
provide a partial disable flag for all units, which, if set, will
set the value of this parameter for each unit in the body
of the ETL system object constructor. This will allow to
disable all units and enable only the necessary ones, thereby
inverting the logic [12].

3.1.6.  Parameterization of the unit. The following func-
tion has been added for the unit. This function accepts as
a parameter – a dictionary, where key – the name of the
parameter to be set and value – the value of this parameter.
If the keys in the passed dictionary are from the sand of
allowed parameters for this unit, the values from the dic-
tionary passed to the function are set as the values of the
unit’s settings dictionary, which are then, in turn, used in
the data verification and processing function.

When a unit is created, it’s assigned a predefined dic-
tionary of allowed parameters called «unit_params». These
parameters are then checked in the «set_unit_params» me
thod, where if a key is found, its corresponding parameter
is set to the specified value. These parameters and values
are subsequently utilized in validation functions, exemplified
by the date format validation function shown in Fig. 2.

In the example, it is possible to see that in the original
data, one of the columns contains two types of informa-
tion that can be represented in the system as separate
columns – «passport» and «passport_details». In this case,
a tuple of indices is specified as the index (dictionary key).
The number of elements in the tuple must be the same

as the number of units in the list to be processed, which
are sequentially in the order in which the data in the
original column is displayed, separated by an additional
delimiter. In this example, the original column contains
passport information followed by additional details. The
column is split using the additional separator, with each
part processed by a corresponding unit and added to the
corresponding index in the index tuple as a column in
the cleaned file. That is, the part of the original column
that contains the information «passport» will be added as
a column in the cleaned file, and the part that contains
the information «passport_details» will be added.

3.2.  Deleting duplicates. Types of value checks to re-
move duplicates:

–	 horizontal check – involves comparing columns –
within the same row – for duplicate values;
–	 vertical check – a row-by-row check of values – for
a specific column. If the value in a column or columns
matches in two rows, the rows are considered duplicates.
If there are several columns to check, if at least one of
them matches in two rows, it is considered a duplicate;
–	 combining vertical and horizontal checking – means
vertical checking, provided that the value matches for
all the columns listed for duplicate search. If there are
several columns to check (Fig. 3), a row is considered
a duplicate only if all the specified columns in diffe
rent rows (vertical check) match each other (hori-
zontal check).

3.2.1.  Types of duplicate deletion. Duplicate deletion
can be divided into the following categories:

–	 deleting complete duplicate rows – at the data read-
ing stage;
–	 deleting duplicates by columns – at the processing stage;
–	 primary duplicate removal with combining the values
of row columns by the key field to be selected (includes
sorting the row and searching downwards for duplicate
«co-joins» with combining the values with them and
marking them as duplicates).

Fig. 2. An example of a unit parameterization sequence

INFORMATION AND CONTROL SYSTEMS:
INFORMATION TECHNOLOGIES

14 TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 3/2(77), 2024

ISSN 2664-9969

Duplicate removal using a specified key field without
merging columns. This process involves a dictionary with
category keys such as «name», «email», and «isdn». Each
category key contains sub-dictionaries where the key is the
field value (e. g., phone number) and the value is the entire
dictionary object for that category.

This approach allows to perform a quick search in the
LARGEST category of keys – the global category, without
sorting and comparing only two neighboring objects.

Category dictionary (name, isd, email) -> category-spe-
cific dictionary -> key – value belonging to this category:
value – full dictionary object containing this key.

Checking for duplicates by hashing – before writing to
a file (checking the hash of a string in a file with hashes
of previously written strings).

3.2.2.  Merge «duplicate» rows by key field (Basic removal
of duplicates with the merge of column values of rows
by the selected key field). The data after cleaning can be
filtered in the following ways:

1.	 Simple deletion of completely duplicate rows – for
this purpose, it is enough to use the standard data struc-
ture – «set».

2.	 Combining two rows – «column to column» – if
a common key column is found (a column in which the
values for these rows are the same). It is worth noting that
the choice of such a column should be made accordingly –
it can be, for example, an email address or a passport num
ber – that is, columns that, by definition, are unique within
the same data set. Let’s look at the second case.

When to merge data by a key column, it is possible
to face the problem that such rows can be quite far apart,
which leads to the problem of comparing each row with
each lower row. To solve this problem and optimize the
work, it is necessary to sort the rows by the desired key
column, thereby placing the rows with the same columns
side by side, which will allow to check the similarity of
a row with only one row below it (i. e. N+1). If to find
a row that duplicates a key field, the data of the columns
of this row are merged with the data of the corresponding
columns of this row, and the lower row that was a du-
plicate is removed from the list of rows.

Not all columns require concatenation for duplicate
detection. For instance, if «email» serves as the unique key,
we won’t typically concatenate «name» values. However,
phone numbers might need concatenation in the final result
row. To solve this problem, it is necessary to define a list
of fields to be skipped in advance.

When gluing columns into one, the following options
are also possible:

1.	 Simple joining of columns through a separator.
2.	 Splitting each column by the specified separator,

converting them into sets, combining the two sets, and
finally gluing the elements of the resulting set – through
the separator – into the final row – the column value.

The first option is ideal for simple values like residen-
tial addresses. These values can be compared as integer
strings rather than sets, preserving their order. Even using
«frozenset» won’t retain meaning when merging two sets
with deleted duplicates and new elements added.

«21, B. Morskaya St.» and «21, Bolshaya Morskaya St.» –
which will result in the line: «street B. Bolshaya Morskaya str.
house 21»)), and the second option is suitable for filtering
values in a column, for example, when combining columns
with mobile phone numbers.

When joining rows by columns, ensure columns aren’t
empty, meaning they’re not equal to « » or «\n». Allowing
this could result in merging rows due to the structure of
cleared data, where dictionaries in each row under the
specified key for duplicate clearance might contain empty
strings or newline characters.

3.2.3.  Types of missing values – when merging dupli-
cates. When merging column values with duplicate rows,
the columns can be divided into two categories:

–	 columns – for which duplicate rows are checked;
–	 columns whose values will be merged if the values
of the columns of the first type match.
There are the following options for skipping column

merging when searching for duplicates:
1.	 Skip columns – for merging. The list of columns is

used – «merge_duplicates_skip_merge_columns». The values
of the columns specified in this list are not merged through
the delimiter in case of duplicates by columns used to check
for duplicates. The value of the first row of two is used, the
column value of the second row is discarded. When using
this type of skip, the values of duplicate rows are not merged
at all. This type of gap ignores the column to be merged.

2.	 Column skip – for merging – by column value. When
using this type of skip – column – is not ignored for merg-
ing – the combination of column values – for duplicate rows –
is performed if the column value itself is not blacklisted.
This type of skip – ignores the column value for merging.

Consider the extreme case when the key field for merging
duplicates is empty (equal to «“””») or equal to a newline
character, or the value of the column to be merged (but not

Fig 3. Types of duplicate data: a – horizontal duplicates check; b – vertical duplicates check; c – combining vertical and horizontal checking

 a b c

INFORMATION AND CONTROL SYSTEMS:
INFORMATION TECHNOLOGIES

15TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 3/2(77), 2024

ISSN 2664-9969

the column itself) is blacklisted (see more details in «types
of column merging»).

For this case, an additional «else» branch was added –
which, if triggered, loops through an additional list of fields
that can be used to check rows for duplicates. At the same
time, since the key field for checking changes with each
iteration, it is also necessary to return the value of the
main field to it.

The logic of the «replace_duplicate_value» method is
given below.

1.	 Two additional data structures are created.
2.	 «The dictionary «founded_duplicates_for_uniq_

fields» stores sets of identified duplicate values. If triggered,
«founded_duplicates_for_uniq_fields_indexes» contains
pairs: the unique field value added to «founded_duplicates_
for_uniq_fields» and the row index where this value occurs».

It is worth explaining separately why the values are
replaced with a stub instead of deleting the entire dictio
nary object from the list of strings (dictionary list). The
fact is that when we are inside a loop and try to delete
a list item, we violate the index order, which further
leads to an out-of-array result.

The following options are possible when combining
strings:

–	 the strings are equal – no
concatenation is needed – it
is possible to return any of
the strings (the condition «if
value_by_key!=second_value_
by_key» is NOT met);
–	 the strings are not equal and
both strings are valid (the con-
dition «if value_by_key!=se
cond_value_by_key:» is met);
–	 one string is a subset of the
second – return the second
string (the length of the sym-
metric set is zero: Condition
is NOT met: «if len(string_
diff)>0»);
–	 one string is NOT a subset
of the other – merge the strings
(the length of the symmetric
set is NOT zero: the values of
the string components do not
overlap completely to consider
one of the strings a complete
substring of the other);
–	 the strings are not equal, but
one of the strings is not valid
(in our case, one of the strings
is equal to the stub value –
«FOR REMOVE») – return
only the valid string (the con-
dition is NOT met – «if value_
by_key!=”FOR REMOVE”
and _value_by_key!=”FOR
REMOVE”»).
Important: the «need_filter_

then_merge» parameter specifies
whether to return a difference
merge (merging of rows, exclud-
ing intersections) or just return
the merged rows.

3.2.4.  Removing duplicates before writing to a file (du-
plicate search post-processing). Secondary removal of du-
plicates by the selected key field – without combining
column values:

–	 checking all sorted values by the specified key field
(«remove_duplicates_by_column»);
–	 checking all sorted values by a separate list of fields –
to remove duplicates before writing to a file («post-
processing_duplicates_remove_keys»).
The main difference between the updated postprocessing

duplicate search and the main duplicate search is that there
is no sorting of the list of values by the specified column.
The entire search for duplicates at the post-processing
stage consists of comparing only two rows – i and i+1.

Removing duplicates by hashing – before writing to a file.
Duplicate search can also be divided into:
–	 local duplicate search – within a given file;
–	 searching for duplicates during cleaning;
–	 search for duplicates at the post-processing stage;
–	 searching for duplicates in relation to an external
database. Example diagram at Fig. 4.
«When searching for duplicates in an external database,

the challenge lies in its black box nature; we lack infor-
mation on loaded rows without access to loading logs».

Fig. 4. Diagram of the hashing operation to remove duplicates

INFORMATION AND CONTROL SYSTEMS:
INFORMATION TECHNOLOGIES

16 TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 3/2(77), 2024

ISSN 2664-9969

Let’s look at the problem in more detail. The task is to
search for non-overlapping values in two lists of dictionary
objects. Each list can contain at least 100 thousand objects,
and this is only during the current operation of loading and
processing new values, and all previously loaded objects
must also be taken into account.

This task can have two initial starting conditions:
1.	 More than one file is input.
2.	 The input is a single file.
Let’s consider each of the cases. More than one file

is given as input. In this case, the algorithm consists of
the following steps:

1.	 Reading a pair of files (more about reading files
below and example diagram at Fig. 5).

2.	 If the lengths of the lists of objects for the two
files are not equal, perform the operation of supplement-
ing the smaller list with empty dictionaries.

3.	 Perform indexing – create a pair – the index of the
object in the list and the object itself.

4.	 Hash the dictionaries by their values.
5.	 If there is a file with previous hashes, honor it.
6.	 Take the non-intersection of the sets of all hashes.
7.	 Find the object indices for the remaining hashes

that do not intersect (reverse indexing).
8.	 Get unique dictionaries based on the found indices.
9.	 Update the file with all hashes – writing the hashes

of all dictionary objects – from the read files.

For the case when there is only one input file:
1.	 Add indexing and hashing of all dictionaries.
2.	 Write the resulting list of hashes to a file.
3.	 Return the list of all objects.
When reading a list of files in a loop, it is possible to

get a sliding window. When reading in pairs, there may
be a problem of re-reading already read data when the
window is moved. To avoid this problem, it is necessary
to memorize the paths to the already read files, and if the
pair that got into the sliding window contains an already
read file, then read only one unread file, thereby reducing
the task to the second option-searching for unique (Fig. 6).

3.3.  Mapping of cleansed data. ETL system – can map
data in two «modes» of operation:

1.	 Data mapping with the final output of a list of co
lumns, which will then be glued into a row.

2.	 Data mapping with the final output of a column
dictionary, which will then be glued into a string.

Each option has its advantages and disadvantages:
–	 The option of using a list can lead to a shift in the list
items, in case of incorrect manipulation of the item –
for example, one of the items in the final list became
an empty string, which is why it was discarded at the
final stage of verification before concatenation. One issue
arises from the variable size of the list, where splitting
and merging can distort the count. Using a dictionary

eliminates shifting problems but requires
predefining keys and values, complicating
the process.

As it is possible to see, the option
of using a dictionary is preferable. It is
responsible for automatically extending
the dictionary to the required length if
the number of initial cleansed columns
is greater than the number of specified
concatenation dictionary items.

The updated version of the function
takes into account the columns that were
obtained as a result of the expansion ope
ration – the «full_keys_list_for_reamer_
adding» parameter. The columns obtained
as a result of the sweep operation are
added to the temporary dictionary with
empty values, after which the temporary
dictionary is added – based on the passed
dictionary with cleared values.

Specialized functions – functions
for data verification and validation, for
checking data from a certain category,
for example, the function for checking
a mobile phone number, the function
for checking the format and boundary
values of the date of birth, the function
for checking the address.

1.  Meta-functions – a type of func-
tion that does not belong to specialized
functions. Generalized functions whose
logic does not depend on the data ca
tegory. An example of such a function
is the «remove_column_by_value» func-
tion, which replaces the entire column
in a csv file if the text in the column
starts with a certain substring.

Fig. 5. Diagram of the hashing operation to remove duplicates if there are more than two input files

INFORMATION AND CONTROL SYSTEMS:
INFORMATION TECHNOLOGIES

17TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 3/2(77), 2024

ISSN 2664-9969

2.  Dictionary search functions are one of the main func-
tions that are used in the same way as auxiliary functions for
specialized functions. The basic idea of these functions is as
follows: set an initial dictionary of words to search, for example:

–	 all values in this dictionary are specified in a single
case, for example, lowercase. For this dictionary, another
auxiliary dictionary is created;
–	 it contains the initial number of keywords in each
list for a given group. As it is possible to see, the keys
of these dictionaries coincide, and the second dictionary
contains the number of items in the list of the first
dictionary for the same key.
Then, in the process of specialized functions, they can

use the «keywords_for_search» dictionary to search for oc-
currences, start or end of their data in the list – by the
key of this dictionary. The main idea of the dictionary is
to further supplement it with all possible combinations,
for example, using such a function:

Furthermore, to conserve resources, this function is
invoked only when the number of items in the list matches
the value in the «start_keywords_dict_length» dictionary
for the corresponding key, indicating the list hasn’t been
fully augmented with combinations yet. This is exactly why
the «start_keywords_dict_length» dictionary was created –
in fact, its values serve as a check whether it is necessary
to call the function of adding a list in the dictionary. «After
updating the dictionary, the search functions verify the
specified value under the given key in the dictionary».

3.	 Validation functions are a subset of dictionary search
functions and, in fact, are completely based on their use.

The only difference that can be distinguished for such func-
tions is the ability to replace the found values (occurrences)
after a dictionary search with another specified value.

4.	 Transformation functions are essentially the same
as validation functions, but they are placed in a separate
group because, unlike the first ones, it is possible to apply
more complex (any) transformations to the data, not just
a simple replacement of the found occurrences.

An example of using hierarchical functions:

’’’python
def validate_passport(data: str):
return check_substring_in_data(data, “passport”, True)
’’’

«validate_passport» – a specialized function; «check_sub-
string_in_data» is a validation function that utilizes the
dictionary search function (enhancing the dictionary and
retrieving its value by key, a comprehensive list of keywords
for search, through the «check_search_dict» function). During
operation, it searches for one of the word variations, such as
«passport», in the input data. The parameter «True» signifies
the necessity to replace this occurrence at the beginning of
the line with an empty line, effectively deleting it.

3.4.  Discussion. Compared to similar methods, for pro-
cessing large volumes of data, the possibility of dividing
the input file or stream into separate parts was used, which
allowed faster cleaning of the combined data. This allows
to process data, the volume of which exceeds the available

Values for one file

Fig. 6. Using the sliding window approach when performing a duplicate search operation using hashing

INFORMATION AND CONTROL SYSTEMS:
INFORMATION TECHNOLOGIES

18 TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 3/2(77), 2024

ISSN 2664-9969

RAM of the device, and improves the methodology of
working with unstructured text files in CSV format.

The practical significance of the developed intelligent
system consists in improving the methods of collecting and
processing information, its further verification, cleaning and
accumulation in the appropriate categories. Data structuring
is achieved by performing a mapping operation on the indexes
of already cleaned data or using a predefined dictionary with
a given set of keys, which allows not to worry about the
sequence of storing values and their possible shift.

One of the most problematic areas is the unification of
databases with different structures and some common fields
into a common structure, and its incomplete automation.
The semi-automated process of the system for structuring
data from several sources is considered. At the beginning of
the software, it is necessary to create appropriate dictiona
ries and rules for combining data. The resulting application
architecture allows to quickly configure the system. Adding
new functionality to the application takes place without
making changes to the logic of the main data processing
pipeline – by creating independent function handlers. These
functions, according to their separate logic, can be added
to the main list of handler functions in any order.

During the first year of the war in Ukraine, people moved
from the temporarily occupied territories to Mykolaiv Oblast,
Kherson Oblast and further across Ukraine by various means:
trains, buses, motor vehicles. The lists of those who went
with whom, how many people, how to contact them were
in fairly free forms, to bring them into a common database,
the need for appropriate software was quite in demand.

Further research consists in the need to use the basics of
lexical analysis and tokenization of data, the work partially
considers cases that can be considered borderline – for cer-
tain data domains, for example – processing the name of
a person, which is inside an arbitrary line and with a previ-
ously unknown location relative to other tokens of this line.

4.  Conclusions

As it has been demonstrated, structuring data before
processing it is one of the key stages that affects the cor-
rectness of the final result. Data structuring is achieved
by performing a «mapping» operation. The mapping itself
can be performed by the indices of already cleansed data
or using a predefined dictionary with a given set of keys,
which allows not to worry about the sequence of storing
values and their possible shift.

To improve the data processing process, namely, to
make the data pipeline more flexible, the application of
OOP principles was demonstrated in order to create in-
dependent objects that can encapsulate the logic of data
processing from a particular information domain, taking
into account the specifics of the data.

The principle of working with data separators was also
considered, and it was demonstrated that data can be di-
vided by the main and additional separator, which affects
the logic of their further processing.

Conflict of interest

The authors declare that they have no conflicts of
interest in relation to this study, including financial, per-
sonal, authorship, or other, that could affect the study
and its results presented in this article.

Financing

The study was conducted without financial support.

Data availability

The manuscript has no associated data.

Use of artificial intelligence

The authors confirm that they did not use artificial intel-
ligence technologies in the creation of the presented work.

References

1.	 Chaturvedi, S., Kumar, P. (2018). Extraction and Conversion
of Web JSON Data into Pandas Data Frame by storing it into
Text File using Python. International Journal for Research in
Applied Science & Engineering Technology, 6 (XI).

2.	 JSON Community. Available at: https://json.com
3.	 Wikimedia Foundation. Wikipedia. Available at: https://en.wikipedia.

org/wiki/Wikimedia_Foundation
4.	 Frozza, A. A., Mello, R. dos S., Costa, F. de S. da. (2018).

An Approach for Schema Extraction of JSON and Extended
JSON Document Collections. 2018 IEEE International Confe
rence on Information Reuse and Integration (IRI). doi: https://
doi.org/10.1109/iri.2018.00060

5.	 Avramenko, O. M. (2017). Intelektualna systema obrobky nes-
trukturovanykh tekstovykh danykh na osnovi tekhnolohii JSON.
Visnyk Natsionalnoho tekhnichnoho universytetu «KPI», 64, 44–48.

6.	 Babenko, L. P. (2018). Zastosuvannia JSON dlia obrobky tek-
stovykh danykh v informatsiino-poshukovykh systemakh. Nau-
kovi zapysky Natsionalnoho universytetu «Lvivska politekhnika»,
843, 34–39.

7.	 Honcharuk, L. V. (2019). JSON: suchasnyi format obminu dany-
my. Visnyk Kyivskoho natsionalnoho universytetu imeni Tarasa
Shevchenka. Seriia: Kompiuterni nauky, 14, 5–10.

8.	 Elsayed, K. I., Elgamel, M. S. (2020). Web of Things Interope
rability Using JSON-LD. 2020 30th International Conference
on Computer Theory and Applications (ICCTA). doi: https://
doi.org/10.1109/iccta52020.2020.9477674

9.	 Sun, C., Zeng, X., Sun, C., Si, H., Li, Y. (2020). Research and
Application of Data Exchange based on JSON. 2020 Asia-Pacific
Conference on Image Processing, Electronics and Computers (IPEC),
349–355. doi: https://doi.org/10.1109/ipec49694.2020.9115155

10.	 Xu, J., Deng, H. (2021). JSON-ASR: A lightweight data stor-
age and exchange format for automatic systematic reviews of
TCM. TMR Modern Herbal Medicine, 4 (2), 12. doi: https://
doi.org/10.53388/mhm2021a0401001

11.	 Afsari, K., Eastman, C. M., Castro-Lacouture, D. (2017). JavaScript
Object Notation (JSON) data serialization for IFC schema in
web-based BIM data exchange. Automation in Construction, 77,
24–51. doi: https://doi.org/10.1016/j.autcon.2017.01.011

12.	 Garg, I. (2024). Study on JSON, its Uses and Applications
in Engineering Organizations. doi: https://doi.org/10.13140/
RG.2.2.19850.07367

*Yehor Kucherenko, Department of Intelligent Information Systems,

Petro Mohyla Black Sea National University, Mykolaiv, Ukraine,

e-mail: yehor.kucherenko@chmnu.edu.ua, ORCID: https://orcid.org/

0009-0008-0909-3780

Inessa Kulakovska, PhD, Associate Professor, Department of In-

telligent Information Systems, Petro Mohyla Black Sea National

University, Mykolaiv, Ukraine, ORCID: https://orcid.org/0000-0002-

8432-1850

*Corresponding author

