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Abstract
Thermal destruction systems are essential for processing hydrocarbon waste, requiring precise temperature control to en-

sure operational efficiency and high product quality. However, accurately modeling the thermal behavior of such systems remains 
a challenging task due to the need for precise identification of transient heating characteristics. This study addresses this problem by 
developing an advanced two-point identification approach for constructing transfer function models of temperature control objects. 
Unlike conventional methods that rely on fixed reference points for each model order, the proposed approach leverages predeter-
mined empirical coefficients, enabling flexible and more accurate identification from any two points on the transient characteristic, 
even in the presence of noise.

The effectiveness of the developed method is validated through the identification of two distinct experimental transient 
characteristics of a 100-liter reactor within a pilot thermal destruction system under noise conditions. Comparative analysis against 
three known identification techniques demonstrates that the proposed approach consistently yields the most accurate models while 
maintaining relatively low computational complexity, due to its versatility and ability to operate in noisy conditions. In particular, 
the values of the integral squared deviation were reduced by 0.126 · 105 for the first case and by 0.092 · 105 for the second case when 
compared with the best results achieved using the conventional two-point method. This confirms its high efficiency and the feasi-
bility of using it to create comprehensive mathematical models of various systems for thermal destruction of hydrocarbon waste. 
The proposed approach is particularly well suited for rapid identification of transfer functions under varying operating conditions 
and can be applied to enhance control strategies, ultimately improving process stability, energy efficiency, and product quality in 
thermal destruction applications.

Keywords: thermal destruction system, temperature control, mathematical model, transfer function, transient process iden-
tification, two-point identification.

DOI: 10.21303/2461-4262.2025.003802



Original Research Article:
full paper

(2025), "EUREKA: Physics and Engineering"
Number 3

208

Computer Sciences

1. Introduction
The development of advanced thermal destruction technologies plays a crucial role in hy-

drocarbon waste processing, enabling the conversion of complex organic compounds into valuable 
gaseous and liquid products [1–3]. Effective temperature regulation is a fundamental requirement 
for ensuring the stability and efficiency of such processes [4–6]. Thermal destruction reactors op-
erate under highly dynamic conditions, where temperature variations significantly impact the reac-
tion kinetics and product composition. Therefore, the creation of accurate mathematical models for 
automatic temperature control is essential for optimizing reactor performance, improving energy 
efficiency, and ensuring consistent product quality. Despite substantial advancements in control 
strategies, the accurate modeling of heating processes remains a challenge due to the nonlinear, 
non-stationary, and multivariable nature of the system dynamics [7, 8]. Addressing these complexi-
ties necessitates the development of refined mathematical models that capture transient process 
characteristics with high precision.

Traditionally, mathematical models for temperature control in thermal destruction systems 
have been constructed based on fundamental equations derived from the physics of heat trans-
fer and chemical kinetics [9–11]. These approaches utilize energy balance equations, reaction rate 
laws, and thermodynamic principles to describe the dynamic behavior of the reactor [12, 13]. For 
instance, models based on Fourier’s law of heat conduction and convective heat transfer coeffi-
cients have been widely applied to predict temperature distributions within reactors [14]. Addition-
ally, chemical kinetics models incorporating Arrhenius-type expressions have been employed to 
simulate the rates of hydrocarbon decomposition reactions [15]. Although the considered models 
based on the fundamental equations of heat transfer and chemical kinetics possess a strong theo-
retical foundation, they are characterized by several critical limitations. Chief among these are the 
high computational demands and the inherent challenges in accurately determining key physical 
parameters of the temperature control object, such as heat transfer coefficients, reaction enthalpies, 
and specific heat capacities. Furthermore, these first-principles models often rely on a series of 
simplifying assumptions, such as ideal mixing, uniform temperature distribution, or steady-state 
operation [16–18], which can substantially diminish their ability to accurately capture the dynamic 
thermal behavior of real-world systems. These limitations significantly restrict the practical appli-
cability of such models in the development of high-precision automatic temperature control sys-
tems for pyrolysis reactors in thermal destruction complexes and installations.

To overcome these limitations, an alternative methodology involves developing models based 
on the identification of experimentally obtained transient process characteristics, which is widely 
applied to various thermal objects [19–21]. This approach focuses on analyzing the system’s re-
sponse to various inputs to derive empirical models that capture the essential dynamics of the pro-
cess. The most widely used models are those constructed using the identification of transient, im-
pulse and frequency characteristics [22–24]. These models allow to derive system dynamics directly 
from observed process behavior, are less computationally intensive and can adapt to real-time data. 
Additionally, various artificial intelligence methods can be effectively used to approximate the de-
pendencies of identified model parameters on changing input conditions and operating modes [25].

Despite the progress made in this direction, several challenges persist in achieving high-ac-
curacy identification of transient responses, primarily due to measurement noise, sensor inaccu-
racies, and unmodeled disturbances [26]. Additionally, identification procedures must be both 
reliable and computationally simple, as the development of universal models for temperature con-
trol objects in thermal destruction systems of varying configurations often necessitates analyzing 
 dozens or even hundreds of transient characteristics obtained under diverse conditions and subse-
quently generalizing the findings [27, 28]. These complexities highlight the need for further refine-
ment of identification methodologies to enhance both accuracy and robustness. 

For instance, in [25], a dynamic mathematical model of a pyrolysis reactor as a temperature 
control object is presented, developed through the identification of transfer function parameters 
based on transient heating characteristics. These identified dependencies were subsequently ap-
proximated using fuzzy logic. In this paper, a widely known approach was employed for the iden-
tification of the transient characteristics, utilizing a transfer function composed of two distinct  
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dynamic links with different time coefficients. A major limitation of this approach lies in its pro-
nounced sensitivity to noise within the transient response, which severely hinders the accurate 
determination of the zero-crossing point of the second derivative curve. As a result, the inflection 
point must often be located graphically by constructing a tangent, a process that inherently intro-
duces significant inaccuracies. These inaccuracies can propagate through the identification proce-
dure, leading to substantial errors in the estimated model parameters. Additionally, the method is 
computationally intensive, as it involves repeatedly solving systems of transcendental equations for 
each new transient characteristic analyzed. This high computational burden restricts the method’s 
practical applicability, particularly in scenarios requiring the processing of numerous experimental 
responses to construct a comprehensive and reliable model.

Another widely used identification method based on the Strejc model [29] employs a single 
inertial link of the n-th order, which significantly reduces computational complexity without com-
promising much accuracy. In this approach, a transfer function composed of multiple distinct ape-
riodic elements can be approximated by a single n-th order inertial link, requiring the identification 
of only one time constant instead of several. This constant, along with the model order, is selected 
from a reference table, eliminating the need to solve transcendental equations. However, despite 
its simpler implementation, the Strejc method also remains sensitive to noise, which complicates 
accurate detection of the inflection point on the experimental curve and introduces uncertainty 
in parameter estimation. Moreover, it does not independently account for the time delay constant, 
which may significantly degrade the accuracy of identification, especially when the object exhibits 
a pronounced transport delay. In such cases, errors in locating the inflection point can lead to in-
correct determination of both the model order and its time constant.

The improved two-point identification method proposed in [30] can partially eliminate the 
shortcomings of the two previous approaches by eliminating the need for precise inflection point 
detection or tangent construction. Instead, it enables model identification using two characteristic 
points: the first corresponds to the theoretical inflection point of a model with a predefined order, 
and the second represents the moment the system reaches 90% or 80% of the steady-state tem-
perature. This method somewhat enhances robustness to noise and allows for the determination of 
the model’s order, main time constant, and delay time, as it utilizes a Strejc model with an added 
transport delay element. Despite offering improvements compared to the previous two methods, 
this approach still faces challenges in reliably identifying the required points under significant 
signal disturbances. Moreover, its reliance on fixed reference points, namely the model-specific 
inflection and a fixed percentage of the steady-state value, limits its flexibility. In some cases, the 
inability to clearly identify these specific points may necessitate alternative validation strategies.

Thus, the challenge of developing a universal approach for constructing comprehensive and 
adequate mathematical models of temperature control objects in thermal destruction systems based 
on reliable identification of transient characteristics in the presence of measurement noise, remains 
unresolved. In response to this gap, the primary objective of the present study is to develop and 
evaluate an extended and versatile approach for synthesizing high-fidelity mathematical models of 
such objects. This approach is intended to provide precise and efficient identification of transient 
heating characteristics, even under noisy conditions, using any two points on the experimental 
curve while also ensuring a more precise determination of these points. By increasing the accuracy 
of these models, the proposed approach will facilitate the design of more effective control strate-
gies, ultimately improving process efficiency and product quality in the thermal destruction of 
hydrocarbon waste.

2. Materials and methods
The development of comprehensive models for temperature control objects within thermal 

destruction systems can be systematically structured into five generalized stages.
At the initial stage of mathematical model development, a specific temperature control ob-

ject within the thermal destruction system is selected. These objects may include reactors – such 
as cyclic, continuous, or mixed-type configurations – where the thermal decomposition of waste 
occurs, as well as heat exchangers integrated into multi-loop recirculation systems and output 
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 condensers responsible for the final separation of product fractions. Once the target object is iden-
tified, the primary input variable is defined, along with additional influencing factors that modify 
the model’s parameters depending on operational conditions and modes. For instance, in a cyclic 
reactor, the primary input variable is the heating power supplied by the gas burner, while the waste 
loading level serves as a critical factor impacting model parameters [25]. Moreover, a variable 
characterizing the current composition of the waste used and the output heating temperature, which 
also changes the parameters of the model, can be additionally taken into account.

In the second stage, an appropriate model type with a generalized structure is selected, 
which will subsequently be synthesized through an identification method based on experimentally 
obtained transient process characteristics [26]. This identification process involves determining 
both the structural form and the specific parameters of the model. For instance, if a complex trans-
fer function is chosen as the modeling framework, it is necessary to define the order of its compo-
nents along with their respective parameters, such as gain and time coefficients [25]. 

The next stage involves determining all possible operational modes of the selected system. 
Experimental studies are then conducted under these conditions and modes on a real installation, 
during which transient process characteristics are recorded. These recorded data serve as the basis 
for refining and accurately identifying the parameters of the mathematical model [28].

The fourth stage involves the direct identification of the structure and parameters of the 
selected model for each experimentally obtained transient characteristic, corresponding to the 
 analyzed operating modes and conditions. The accuracy of characteristic reproduction, the adequa-
cy of the resulting model, and the computational complexity of the process are largely determined 
by the chosen identification method. An effective identification approach should ensure a balance 
between model precision and computational efficiency, enabling reliable representation of system 
dynamics across varying operational scenarios [27, 28].

At the final fifth stage, the individually identified models, each with precisely determined pa-
rameters and structures, are integrated into a comprehensive model capable of simulating the heating 
and cooling dynamics of temperature control objects within the thermal destruction system across 
all primary operating modes. This generalization is best achieved using fuzzy logic, artificial neural 
networks, or other machine learning techniques, depending on the number of available experimental 
characteristics and other features. These advanced methodologies enable accurate approximation of 
complex dependencies, ensuring the adaptability and reliability of the unified model [31–33].

This study primarily focuses on enhancing the fourth stage – identification of transient heat-
ing characteristics – by proposing an improved approach that ensures higher accuracy and efficiency 
in model formulation.

An approach using two links with different time coefficients. First, it is possible to examine 
a well-established approach for identifying the transient characteristics of thermal power systems, 
which offers moderate accuracy in model representation. According to this methodology, the tem-
perature control object within the thermal destruction system is described by the transfer func-
tion WTCO(s) including two different inertial links with different time coefficients [25]
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where TR is the output temperature of the control object; PH is supplied input heating power;  
K is the gain coefficient; T1 and T2 denote the time coefficients of the aperiodic and inertial links, 
respectively; n corresponds to the order of the inertial link; τ represents the time delay.

To determine the parameters of this transfer function, a normalized experimentally obtained 
transient heating curve T(t) of the object under specific initial conditions is utilized (Fig. 1). Ad-
ditionally, based on this experimental characteristic, a graph of its second derivative T″(t) is con-
structed to identify the inflection point (t = ti), where the second derivative equals zero. In addition, 
Fig. 1 also uses the following notations: T(ti) is the temperature value at the moment of inflection;  
TS is the set temperature value after completion of the transient process; T0 is the basic time constant. 
Further, the key parameters ti, T(ti), T0, and TS are extracted from the transient characteristic T(t).  
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Using these values, the system of equations (2) is solved to determine the time constant T1 and the 
intermediate variable y
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Subsequently, the system of equations (3) is solved to obtain the intermediate variable x, 
allowing the time constant T2 to be calculated as T2 = T1/x
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Additionally, the gain factor K is determined as the ratio of the steady-state output tempera-
ture TS to the input heating power PH after the transient process has completed. The obtained values 
of K, T1, and T2 are then substituted into the transfer function, and an initial simulation is conducted 
with a time delay τ = 0 and an inertial link’s order n = 1. The resulting response is compared to the 
experimental characteristic, and if their inflection points (ti and tim) do not match, a time delay τ is 
introduced, calculated as ti–tim. To further improve accuracy, the model order n is systematically 
varied (e.g., n = 2, 3, 4, etc.), with each iteration simulated and evaluated using a predefined proxim-
ity criterion, such as the mean square deviation or other. The optimal order n is then selected based 
on the best fit to the experimental data.

Fig. 1. Transient response characteristics of a temperature control object

The primary drawback of this approach is its susceptibility to noise in the transient response, 
which makes it nearly impossible to precisely determine the intersection of the second derivative 
graph with the time axis. Consequently, the inflection point must be sought graphically by construct-
ing a tangent, introducing a considerable degree of inaccuracy. As a result, all identified model pa-
rameters may exhibit significant errors. Furthermore, this method entails substantial computational 
effort, as it requires solving systems of transcendental equations each time a new transient response 
is analyzed. This imposes considerable limitations on its applicability, particularly when it is neces-
sary to process a large number of experimental characteristics to develop a comprehensive model.

An approach using the Strejc model. The Strejc method, which uses only one inertial link 
of the n-th order, has significantly lower computational costs and no worse accuracy. According to 
this method, a transfer function composed of n distinct aperiodic links, each with different time 
constants, can be enough accurately approximated by a single inertial link of the n-th order [29]
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Thus, during the identification process, only a single time constant needs to be determined 
instead of two. Moreover, rather than solving systems of transcendental equations, this constant T, 
along with the model order n, is obtained from a predefined reference table (Table 1). 

Table 1
The reference table for determining model’s parameters (the Strejc method)

n 1 2 3 4 5 6 7 8 9 10
ta/tb 0 0.104 0.218 0.319 0.41 0.493 0.57 0.642 0.709 0.773
te/tb 1 0.736 0.677 0.647 0.629 0.616 0.606 0.599 0.593 0.587
T(ti) 0 0.264 0.323 0.353 0.371 0.384 0.394 0.401 0.407 0.413
ta/T 0 0.282 0.805 1.425 2.1 2.811 3.549 4.307 5.081 5.869
tb/T 1 2.718 3.695 4.463 5.119 5.699 6.226 6.711 7.164 5.59
te/T 1 2 2.5 2.888 3.219 3.51 3.775 4.018 4.245 4.458
td/T 0 1 2 3 4 5 6 7 9 9

Initially, the parameters ta, tb, te, and td are extracted from the experimentally obtained 
transient response graph (Fig. 2). 

Fig. 2. Determination of parameters ta, tb, te, and td from transient response

The model order n is then determined based on the ratios ta/tb and te/tb, followed by the cal-
culation of the model’s time constant T using the relations ta/T, tb/T, te/T, and td/T for this determined 
order. Moreover, the order of the model n and its time constant T can be determined only by the first 
relations ta/tb and ta/T, and the remaining relations are used only for additional verification. In case 
of obtaining intermediate values of the relation ta/tb, which are not in the table, the nearest smaller 
number is selected. The gain factor K is determined in the same way as in the previous approach.

Despite its low computational cost, this method, like the previous approach, encounters 
challenges in accurately identifying the inflection point and subsequent parameters on the experi-
mental characteristic in the presence of noise. Furthermore, it does not account for the separate 
determination of the model’s time delay constant τ, which may also lead to a significant reduction 
in identification accuracy. In cases where the object exhibits a distinct and significant transport 
delay, the inflection point may be determined incorrectly with subsequent erroneous determination 
of both the model’s order and its time constant.

Two-point identification method. To overcome the primary limitations of the two previously 
discussed approaches, an improved method is proposed in [30]. This method eliminates the need 
for precise inflection point determination or tangent construction and instead enables identification 
based on two points of the experimental characteristic. The first point corresponds to the assumed 
inflection, not on the experimental characteristic itself, but on the model characteristic with a pre-
defined order. The second point is defined as the moment when the system reaches either 90% or 
80% of the steady-state temperature value.
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This method allows for fairly effective identification in the presence of noise and involves 
determining the delay time constant τ in addition to the main time constant T and the order of the 
model n, since its approximating transfer function is the Strejc model together with the transport 
delay link [30]
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In study [30], the formulas were derived to implement this method, enabling the determi-
nation of both the basic time constant T and the delay time constant τ for models up to the fifth 
order (Table 2). These formulas were obtained based on known equations describing the model’s 
response to a step input, along with its first and second derivatives. 

Given that the object’s order is initially unknown, the model parameters T and τ are identi-
fied for each possible order (ranging from n = 2 to n = 5) using the formulas provided in Table 2. 

Table 2
The reference table for determining model’s parameters (the Two-point method)

n T(ti)
T, using the point 90%  

of the steady-state value t90

T, using the point 80%  
of the steady-state value t80

τ

2 0.264 T = 0.34605 (t90 – ti) T = 0.50143 (t80 – ti) τ = ti – T
3 0.323 T = 0.30099 (t90 – ti) T = 0.43878 (t80 – ti) τ = ti – 2T
4 0.353 T = 0.27168 (t90 – ti) T = 0.39761 (t80 – ti) τ = ti – 3T
5 0.371 T = 0.25040 (t90 – ti) T = 0.36751 (t80 – ti) τ = ti – 4T

Subsequently, the integral squared deviation between the model’s transient response and 
the experimental characteristic is computed for all considered orders. The optimal model is then 
selected with the order n that yields the smallest integral squared deviation, ensuring the best fit to 
the experimental data. 

Although this method offers higher identification accuracy compared to the two previously 
discussed approaches, it remains susceptible to significant errors in determining the required points 
on the graph under strong noise influence. Another key limitation is that identification is restricted 
to predefined points – namely, the inflection point (ti) for each order and the 90% (t90) or 80% (t80) of 
steady-state value. In certain cases, locating these specific points may be challenging, necessitating 
the use of alternative points for validation. To overcome these limitations, this study proposes an 
extended and more versatile approach to creating models for the temperature control objects of ther-
mal destruction systems. The developed approach enables identification using any two points on the 
experimental curve while also ensuring a more precise determination of these points.

3. Results and discussion
Extended two-point identification approach. The proposed approach relies on the deter-

mination of empirical coefficients Kt t
n
1 2/ , which are computed as the ratio of two time moments,  

t1 and t2, at which the experimental transient response reaches specific percentage values T1/TS and 
T2/TS of the steady-state temperature. These coefficient sets can be precomputed for all relevant 
time moments pairs and model orders n through preliminary computational experiments with 
generalized transfer functions of various orders of the form (5). During these simulations, the cor-
responding time moments can be automatically recorded when the transient response reaches the 
predefined percentage values, using specialized software. Consequently, during the identification 
process, the model order is determined based on the value of coefficient Kt t

n
1 2/ . Subsequently, for 

the accurate determination of the time constant T in the transfer function (5) for the identified or-
der, an additional coefficient KT t

n
/ 2  is introduced, which represents the ratio of the time constant T 

to the time moment t2. Similar to the first set, the values of these coefficients for different orders 
and predefined time moments must also be precomputed. 
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Furthermore, when applying this approach to real transient characteristics affected by noise, 
multiple crossing points of the first and second percentage values may be recorded, resulting in 
determining multiple variants of time moments t1 and t2, as illustrated in Fig. 3. In such cases,  
to determine the final time values, it is recommended to average these points using established 
statistical methods, for example, computing the arithmetic mean

 t
t

m

j
j

m

1 �
�
� 1
1 , (6)

where m is the total number of recorded moments of intersection of the percentage value T1/TS. 

Fig. 3. Determination of time moments t1 and t2 under noise conditions

In turn, for the time moment t2, the averaging is carried out in a similar manner. For instance, 
for two selected pairs of time moments (t30 and t90; t25 and t75), the corresponding sets of coeffi-
cients Kt t

n
1 2/  and KT t

n
/ 2  are determined for model orders ranging from 1 to 11 and presented in Table 3.

Table 3
The reference table for determining model’s parameters (extended two-point method)

n Kt t
n
30 90/ KT t

n
/ 90

Kt t
n
25 75/ KT t

n
/ 75

1 0.155 0.434 0.208 0.72
2 0.282 0.257 0.357 0.371
3 0.359 0.188 0.441 0.255
4 0.413 0.149 0.496 0.196
5 0.455 0.125 0.537 0.159
6 0.487 0.108 0.569 0.135
7 0.514 0.095 0.594 0.117
8 0.536 0.084 0.615 0.103
9 0.556 0.077 0.633 0.093
10 0.572 0.07 0.648 0.084
11 0.587 0.065 0.662 0.077

Given that the presence of a pure transport delay in the object is initially unknown, it must 
be considered when computing the empirical coefficients based on the experimental characteristic. 
For instance, in the case of the coefficient Kt t

n
1 2/

 K t
tt t

n
n

n1 2

1

2
/ .�

�
�
�
�
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Following straightforward transformations, the delay time τn for the model of the n-th order 
can be determined as follows

 � n t t
n

t t
n

t K t
K

�
�

�
1 2

1 2

1 2
1

/

/
. (8)

Thus, the proposed approach to identifying the experimental transient response of a given 
temperature object is implemented through the following sequence of steps. First, transfer func-
tions are generated for each of the considered model orders. If an initial hypothesis regarding the 
potential order of the object is available, the number of models can be significantly reduced. Next, 
the time points t1 and t2 are taken from the experimental characteristic (if multiple values are re-
corded for each point, the data are averaged using formula (6)). Subsequently, for all considered 
models of the selected orders, the delay time constants τn are computed using formula (8), while the 
basic time constants T n are determined according to formula (9)

 T K tn
T t
n n� �� �/ .

2
2 �  (9)

The gain factor K of all the obtained transfer functions is determined in the same way as for 
all the methods considered in the previous section.

Subsequently, all synthesized models undergo simulation, and their transient response char-
acteristics are evaluated against the experimental characteristic of the object using the integral 
square deviation criterion. The optimal model, corresponding to the correct order, is identified 
based on the minimal deviation value. If additional validation of the obtained results is required, 
the entire identification process can be reiterated using an alternative pair of time points t1 and t2.

Validation of the proposed approach. To validate the effectiveness of the proposed ap-
proach, this study applies it to the identification of two distinct experimental transient characteris-
tics (Fig. 4, a, b) recorded during the heating process of a 100-liter reactor in an experimental ther-
mal destruction system. The first characteristic corresponds to a supplied heating power of 17 kW 
with an initial reactor loading of 90%, while the second was obtained with a heating power of 22 kW 
and an initial loading of 50%. For comparative analysis, identification was performed for both cas-
es using the proposed approach, alongside the three methods discussed in the previous section.

Fig. 4. Experimental transient characteristics for the reactor heating of the pilot thermal 
destruction system: a – heating power of 17 kW and an initial reactor loading of 90%;  

b – heating power of 22 kW and an initial loading of 50%

Using the two-point identification method, calculations were performed for model orders 
n ranging from the 2nd to the 5th, followed by the selection of the most accurate model. In this 
case, the second reference point was the time moment t90. In turn, the proposed extended two-point 
approach considered model orders n from the 1st to the 10th, also with further selecting the opti-
mal model. For the identification of transient characteristics, the time moments t30 and t90 were 
utilized, with formula (6) applied to average their different values.
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Table 4 summarizes the results of the experimental transient characteristics’ identification 
process, including the defined transfer functions of the models with their respective parameter 
values, as well as the integral square deviation values used for adequacy analysis.

Additionally, Fig. 5 presents the simulation results of the identified transfer functions ob-
tained using all the studied identification methods, juxtaposed with the experimental characteris-
tics for the first case (heating power of 17 kW and initial reactor loading of 90%).

Table 4
Results of the experimental transient characteristics’ identification process for the 100-liter 
reactor of the pilot thermal destruction system

Model properties
Identification methods under study

Method using two dif-
ferent links Strejc method Two-point method Extended two-point 

method
1st characteristic: heating power of 17 kW, initial reactor loading of 90%

Obtained transfer 
function

0 038
67 6 1 23 9 1

125
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.

. .
e

s s

s�

�� � �� �
0 038

59 6 1 5
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s
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�� �
0 038
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8 77
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.

.e
s
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�� �
Integral square  
deviation value 2.786 · 106 1.77 · 105 1.346 · 105 1.22 · 105

2nd characteristic: heating power of 22 kW, initial reactor loading of 50%

Model properties
Identification methods under study

Method using two dif-
ferent links Strejc method Two-point method Extended two-point 

method

Obtained transfer 
function

0 035
66 3 1 16 51 1

54

3
.

. .
e

s s

s�

�� � �� �
0 035

54 14 1 4
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4
.
.
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0 035
43 15 1

5 4

4
.
.

.e
s

s�

�� �
Integral square  
deviation value 6.362 · 105 3.841 · 106 1.648 · 105 1.556 · 105

Fig. 5. Simulation results of the obtained models using the studied methods for the first case:  
a – general view; b – detailed view; 1 – real process; 2 – method using two different links;  

3 – Strejc method; 4 – two-point method; 5 – extended two-point method

In the same way, Fig. 6 shows the simulation results for the second case (heating power of 
22 kW and initial loading of 50%).

As evidenced by Table 4 as well as Fig. 5, 6, the models synthesized using the proposed 
extended two-point identification approach demonstrate the highest accuracy compared to those 
developed with the other studied methods in both considered cases. The two-point method intro-
duced in paper [30] also yields reliable results, albeit with slightly lower accuracy. In contrast, 
 models obtained using the method with two different links and the Strejc method exhibit signifi-
cantly reduced precision – the former showing the poorest performance in the first case, while the 
latter underperforms in the second case.
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Fig. 6. Simulation results of the obtained models using the studied methods for the second case: 
a – general view; b – detailed view; 1 – real process; 2 – method using two different links;  

3 – Strejc method; 4 – two-point method; 5 – extended two-point method

Despite the slightly lower accuracy of the conventional two-point method, the developed 
extended approach offers greater universality, as it enables identification using any two conve-
nient points on the transient characteristic. Furthermore, this method maintains relatively low 
computational complexity, making it suitable for rapid identification of multiple transfer func-
tions based on various experimental characteristics taken from a temperature control object in 
various operating modes.

These identified models can subsequently be integrated into a unified complex model, for 
instance, using fuzzy logic [33–35]. Additionally, different pairs of points on the experimental 
characteristic can be leveraged for further verification of the obtained model parameters. Overall, 
the findings confirm the high efficiency of the proposed extended approach for identifying transfer 
functions based on experimental characteristics of temperature control objects (including when 
working with noisy data) and its practical applicability in creating comprehensive mathematical 
and computational models for thermal destruction systems.

The proposed approach has certain limitations that should be acknowledged.
Experimental transient characteristics of temperature objects must be recorded during 

a dedicated active identification experiment, conducted without automatic control loops and under 
minor disturbances. If the system operates under automatic control or is subject to significant ex-
ternal disturbances, accurate identification using this method will not be feasible. 

Additionally, the approach is constrained in its applicability to objects exhibiting significant 
non-stationarity or non-linearity. However, in such cases, an alternative strategy can be employed – 
by selecting different pairs of points in distinct sections of the transient response, it is possible to 
determine the dynamic variations of model parameters as they change with time or temperature. 
This adaptive refinement of the method is planned for further investigation in future studies.

4. Conclusions
This study introduces and analyzes an advanced approach for developing accurate and 

comprehensive mathematical models of temperature control objects within thermal destruction 
systems, based on the identification of transient heating characteristics. The proposed approach 
enables the construction of models in the form of transfer functions with precisely defined parame-
ters and order, leveraging a two-point identification procedure applied to experimental transient 
characteristics of temperature control objects. In contrast to the known conventional two-point 
identification method, which rely on fixed reference points for each model order, the presented 
approach offers greater flexibility and universality. By utilizing predetermined empirical coeffi-
cients, it allows identification to be performed using any two points on the characteristic, including 
in the presence of noise, thereby enhancing its adaptability and robustness.

The effectiveness and validation of the proposed extended two-point identification approach 
are assessed through the identification of two distinct experimental transient characteristics of 
a 100-liter reactor within a pilot thermal destruction system. In turn, the first characteristic was 
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obtained at a supplied heating power of 17 kW with an initial reactor loading of 90%, the second 
one was recorded for a heating power of 22 kW and an initial loading of 50%. The evaluation 
is performed in comparison with three alternative methods: the conventional two-point identifi-
cation method, the Strejc method, and an approach utilizing two different links. The simulation 
results demonstrate that models synthesized using the proposed method exhibit the highest accu-
racy across both considered cases, which corresponds to the smallest values of the integral square 
deviation: 1.22·105 for the first experiment and 1.556·105 for the second experiment. Thus, when 
compared with the best results achieved using the conventional two-point method, the values of 
the integral squared deviation were reduced by 0.126·105 (first case) and by 0.092·105 (second case). 
Additionally, the approach maintains relatively low computational complexity, enabling the rapid 
identification of multiple transfer functions based on various experimental characteristics obtained 
from a temperature control object operating under different conditions. These identified models 
can subsequently be integrated into a unified, comprehensive model that captures the full dynamic 
behavior of temperature control objects across all primary operating modes, utilizing techniques 
such as fuzzy logic, neural networks, or other machine learning algorithms.

Overall, the obtained results confirm the high accuracy and robustness of the proposed 
extended approach in identifying transfer functions from experimental transient characteristics 
of temperature control objects, even under noisy conditions. Its practical applicability extends to 
the development of various mathematical and computational models for thermal destruction sys-
tems, enabling a more precise representation of system dynamics. By improving the fidelity and 
flexi bility of the identified models, this approach supports the design of more efficient control 
strategies, ultimately enhancing process stability, operational efficiency, and product quality in the 
thermal destruction of hydrocarbon waste.
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