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The paper considers quadrature-cubic interpolation in problems of restoration of functions of two arguments. The properties of 
the most common finite elements Q12 (Lagrange version) and Q10 (Serendipity version) are investigated as finite elements. For 
more than fifty years, researchers of the finite element method have known the procedure of converting the Lagrangian model to
the serendipity model. But, as is known, not all results when using this procedure satisfy users, especially proponents of physical 
interpretation. We are talking about the magnitude of the nodal loads of the uniform mass force of the serendipity finite element. 
Thus, if we consider the finite element Q10, it receives the physical inadequacy of the "spectrum" as an inheritance from the 
"parent" pair of Lagrangian finite elements Q8 and Q12. In Pascal's scheme, there is also a hidden connection between the finite 
element Q10 and the finite element Lagrangian Q12. The analysis of the inherited properties suggests that it is fundamentally 
possible for a Q10 substitute-base to exist in nature with the same local and integral characteristics. It turns out that the search for 
such a base goes beyond the capabilities of traditional modeling methods. An alternative substitute-basis Q10 was found by 
nonmatrix condensation of the prototype of element Q10, i.e., by using the Lagrangian model Q12. The universal nature of the 
non-matrix transformation of Q12 into Q10 opens up the possibility of designing a model series of mixed finite elements with 
physically adequate spectra of nodal loads.
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1. Introduction

The construction of bases of mixed finite elements (FE) is a pressing concern in the problems of orthotropic fields 
study. We consider this problem on a specific example, when in the direction of the axis OX the field changes 
according to the law of the cubic parabola, and in the direction of the axis OY - according to the law of the quadratic 
parabola. Element Q10 is a mixture of elements Q8 and Q12. We are talking about serendipity finite element (SFE), 
in Lagrange finite elements (LFE) such a problem does not look complicated and has a single solution. Serendipity 
approximations did not stop at the standard models of Ergatoudis, Irons, and Zienkiewicz (1968). The constructive 
theory of SFE approximation has been systematically enriching the library of Q8 and Q12 elements for almost 40 
years. Mixed models are on the agenda.

The most popular Q8 and Q12 were obtained by ingenious selection in 1968 [1]. This was the first successful 
attempt to eliminate unwanted internal nodes in Q9 and Q16 LFE. Portraits of zero-level lines of elements Q8 and 
Q12 indicate that the history of SFE began with geometric construction. This result was later confirmed by the 
method of matrix algebra [2] and the non-matrix method of Taylor [3]. The popularity of Q8 and Q12 models 
stimulates the search for a square-cubic Q10. In the LFE class a similar model was obtained by Yu.I. Nemchinov [4]. 
It is Q12 element, which is a mixture of Q9 and Q16. It is worth noting that information on mixed models is very 
limited. We can call the linear-quadratic model [5, 6] and the linear-cubic model [7]. The authors [8] warned about 
specific difficulties in the problems of interpolation of functions of two arguments even before the appearance of 
SFE. With the appearance of SFE there have been more questions than answers, possibly because SFE do not have 
one-dimensional analogues. If we remove the restriction on the degree of the interpolation polynomial as it is done 
in [9], we can obtain alternative bases of SFE [10, 11, 12, 13]. The results below confirm that the search for 
alternatives continues.

2. Main results of the study

2.1. Purpose of The Study

To construct a standard base of mixed Q10 SFE, which implements quadratic-cubic interpolation. To justify what 
and how Q10 inherits from the "parent" pair Q8 and Q12. To find the substitute-base of Q10 element based on 
hereditary properties. To show that the method of non-matrix condensation generates Q10 models with physically 
adequate spectra of nodal loads.

2.2. Research Material

Let the carrier of finite functions be the canonical square: 1y1x ≤≤ , . Standard SFE Q8 and Q12 are used as 
ingredients for the formation of Q10. Similarly, Q12 is formed for LFE Q9 and Q16. Schematically the hybridization 
process is shown on the example of angular surfaces ( )yxN1 , (fig. 1). Cognitive and graphic analysis of fig. 1 helps 
to learn what and how mixed models (fig. 1, c, f) inherit from their “parent” pair of models. There is some 
information about the Q12 LFE model (fig. 1, c) in the book [4]. Little-known SFE model Q10 is in the focus of our 
attention (fig. 1, f). 

Let us remind what the basic functions of known models look like:

Q9 LFE (fig. 1, a):
( ) ( )( );, 22

0 y1x1yxN −−=

( ) ( )( ) ;, xyy1x1
4
1yxN1 −−= similarly ( )yxNi , for 432i ,,= ;

( ) ( )( ) ;, y1yx1
2
1yxN 2

5 −−= similarly ( )yxNi , for 876i ,,= .

(1)



356	 Petro Guchek  et al. / Procedia Computer Science 237 (2024) 354–362Author name / Procedia Computer Science 00 (2019) 000–000 3

7

1 2

34

5

68 x

y

0
7

1 2

34

5 6

8

10

11

12 13 14

1516

9 7

1 2

34

5 6

8

910 1112

a) b) c)
Lagrange finite elements family:  Q9,  Q16,  Q12

7

1 2

34

5

68 x

y

7

1 2

34

5 6

8

910

11

12

7

1 2

34

5 6

8

910

d) e) f)
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Fig. 1. Zero level lines of angular surfaces ( )yxN1 ,
(areas of negative values ( )yxN1 , are hashed)

Q16 LFE (fig. 1, b):

( ) ( )( )( )( );, 22
1 y91x91y1x1

256
1yxN −−−−= similarly ( )yxNi , for 432i ,,= ;

( ) ( )( )( )( );, 1y9y1x31x1
256

9yxN 22
5 −−−−= similarly ( )yxNi , for 126i ,= ;

( ) ( )( )( )( );, y31x31y1x1
256
81yxN 22

13 −−−−= similarly ( )yxNi , for 161514i ,,= .

(2)

Q12 LFE (fig. 1, c):

( ) ( )( )( ) ;, yx91y1x1
32
1yxN 2

1 −−−= similarly ( )yxNi , for 432i ,,= ;

(3)
( ) ( )( )( ) ;, y1yx31x1

32
9yxN 2

5 −−−= similarly ( )yxNi , for 876i ,,= ;

( ) ( )( )( );, 22
9 y11x9x1

16
1yxN −−+= similarly ( )yxNi , for 10i = ;

( ) ( )( )( );, 22
12 y1x31x1

16
9yxN −−−= similarly ( )yxNi , for 11i = .

Q8 SFE (standard) (fig. 1, d):

( ) ( )( )( );, yx1y1x1
4
1yxN1 −−−−−= similarly ( )yxNi , for 432i ,,= ;

(4)
( ) ( )( );, y1x1

2
1yxN 2

5 −−= similarly ( )yxNi , for 876i ,,= ;

Q12 SFE (standard) (fig. 1, e):
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Q16 LFE (fig. 1, b):

( ) ( )( )( )( );, 22
1 y91x91y1x1

256
1yxN −−−−= similarly ( )yxNi , for 432i ,,= ;

( ) ( )( )( )( );, 1y9y1x31x1
256

9yxN 22
5 −−−−= similarly ( )yxNi , for 126i ,= ;

( ) ( )( )( )( );, y31x31y1x1
256
81yxN 22

13 −−−−= similarly ( )yxNi , for 161514i ,,= .

(2)

Q12 LFE (fig. 1, c):

( ) ( )( )( ) ;, yx91y1x1
32
1yxN 2

1 −−−= similarly ( )yxNi , for 432i ,,= ;

(3)
( ) ( )( )( ) ;, y1yx31x1

32
9yxN 2

5 −−−= similarly ( )yxNi , for 876i ,,= ;

( ) ( )( )( );, 22
9 y11x9x1

16
1yxN −−+= similarly ( )yxNi , for 10i = ;

( ) ( )( )( );, 22
12 y1x31x1

16
9yxN −−−= similarly ( )yxNi , for 11i = .

Q8 SFE (standard) (fig. 1, d):

( ) ( )( )( );, yx1y1x1
4
1yxN1 −−−−−= similarly ( )yxNi , for 432i ,,= ;

(4)
( ) ( )( );, y1x1

2
1yxN 2

5 −−= similarly ( )yxNi , for 876i ,,= ;

Q12 SFE (standard) (fig. 1, e):
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( ) ( )( ) ( )( );, 10yx9y1x1
32
1yxN 22

1 −+−−= similarly ( )yxNi , for 432i ,,= ;
(5)

( ) ( )( )( );, y1x31x1
32
9yxN 2

5 −−−= similarly ( )yxNi , for 126i ,= ;

It remains to find a standard base for a Q10 mixed model (fig. 1, f). 
Let us remind that the base functions ( )yxNi , must satisfy the conditions of the Lagrange interpolation 

hypothesis:

( ) ( )∑
=

=




≠
=

=
M

1i
ikki 1yxN

ki0
ki1

yxN ,
;,
,,

, (6)

where i is number of function, k is number of node, M is amount of nodes.
Nodal loads iγ from a singular mass force are determined by the Newton-Cotes formula:

( )∫∫=
D

ii dxdyyxN
S
1 ,γ , where  S  is FE area. (7)

Today there are several methods for constructing the base for SFE: the inverse matrix method [2, 4, 5], the 
Taylor’s method [3, 14, 15], matrix condensation (Jordan, 1970), non-matrix condensation [16], direct geometric 
construction [17, 18, 19, 20]. First let us figure out what the inverse matrix method gives for Q10. The interpolation 
polynomial is built on the basis of Pascal's scheme (fig. 2, a):

( )









+++++++++=
23

22

3

10
2

9
2

8
3

7
2

65
2

4321

yx
yx
yx

xyyxxyxyxyxyxf αααααααααα, . (8)

1
                           x y /

2x xy 2y /
3x yx2 2xy / 3y

              yx3 22 yx /

                   23 yx /

17
15

7

1 2

34

5 6

8

910

9
7

a) b)
Fig. 2.   (a) Pascal's scheme for Q10; (b) zero level lines ( )yxN1 , base substitute Q10

The aim is to solve a system of linear algebraic equations with a 10x10 matrix. It seems that you can get three 
bases depending on the choice of the tenth monomial (fig. 2, a).

In fact, only one monomial yx3 works. In the other two cases the determinant of the matrix is zero, although the 
interpolation remains quadratically cubic. The situation resembles Bertrand's paradox from probability theory: the 
answer depends on the method. Similar cases are found in the theory of interpolation [8]. Below we will try non-
matrix condensation [16], and now we are giving the basis obtained by the matrix method.

Q10 SFE (standard) (fig. 1, f):

( ) ( )( )( )9y8x9y1x1
32
1yxN 2

1 −−−−=, , similarly ( )yxNi , for 432i ,,= ;

(9)( ) ( )( )( );, y1x31x1
32
9yxN 2

5 −−−= similarly ( )yxNi , for 876i ,,= ;

( ) ( )( );, 2
10 y1x1

2
1yxN −−= similarly ( )yxN9 , .
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Here are some local and integral characteristics of the models to understand what and how mixed models Q12 and 
(most importantly) Q10 inherit. The main numerical characteristics are nodal loads iγ and barycentric applicatеs 

( )00Ni , . Applicates in the center of the carrier make it possible to test the second condition of hypothesis easily and 
quickly (6).
Q9 LFE:

;;,,;,,
36
1685i

36
441i

36
1

0ii ===== γγγ ( ) ,, 000Ni = 81i ,= ; ( ) ., 100N0 = (10)

Q16 LFE:

;,,;,,;,, 1613i
64
9125i

64
341i

64
1

iii ====== γγγ ( ) ,,
256

100Ni = 41i ,= ;

( ) ;,,, 125i
256

900Ni =−= ( ) ,,
256
8100Ni =

(11)

Q12 LFE:

;,,;,,;,,;,, 1211i
48
12109i

48
485i

48
341i

48
1

iiii ======== γγγγ ( ) ,, 000Ni =

41i ,= ; ( ) ;,,, 85i000Ni == ( ) ,,
16
100Ni −= ;, 109i = ( ) ,,

16
900Ni = 1211i ,= .

(12)

It should be noted that the Q12 mixed model inherited a physically adequate spectrum of nodal loads. This fact 
fundamentally distinguishes LFE from SFE. The influence of the "parent" pair Q9 and Q16 on the synthetic element 
Q12 is balanced by the rule of geometric averaging. For example, the total number of nodes 16912 ⋅= , the 
number of internal nodes 412 ⋅= , the angular load )/()/(/ 641361481 ⋅= . Portraits of zero level lines of 
angular surfaces (fig. 1, a, b, c) indicate that the Q12 model inherits a grid from orthogonal lines ("chessboard").

Now let us give similar information about SFE (fig. 1, d, e, f).
Q8 SFE:

;,,;,, 85i
3
141i

12
1

ii ===−= γγ ( ) ,,
4
100Ni −= 41i ,= ; ( ) ,,

2
100Ni = ., 85i = (13)

Q12 SFE:

;,,;,, 125i
16
341i

8
1

ii ===−= γγ ( ) ,,
16
500Ni −= 41i ,= ; ( ) .,,, 125i

32
900Ni == (14)

Q10 SFE:

;,,;,,;,, 109i
48
1685i

48
941i

48
5

iii =====−= γγγ

( ) ,,
32
900Ni −= 41i ,= ; ( ) ;,,, 85i

32
900Ni == ( ) ,,

2
100Ni = ., 109i =

(15)

We call the Q10 model the standard one because it is formed from standard Q8 and Q12. It inherited a physically 
inadequate spectrum { }iγ . The influence of the "parent" pair on the synthetic element Q10 is balanced by the rule of 
arithmetic averaging. For example, the number of nodes ( ),)/( 1282110 += angular loads 

( ))/()/()/()/( 8112121485 −−=− , barycentric applicate of the angular surface ( ))/()/()/()/( 1654121329 −−=− .
We will comment on the appearance of the parabola (fig. 1, f). It is interesting what features of the "parent" pair 

this second-order curve inherits. Cognitively graphical analysis of portraits (fig. 1, d, e) suggests that the infinite 
length of the parabola is from a line (fig. 1, d), and the curvature is from a circle (fig. 1, e). Another second-order 
curve, hyperbola, has the same features. This fact inspires the search for alternative bases for Q10. The inexhaustible 
potential of Pascal's scheme reminds us of the possible existence of alternatives (fig. 2, a). Monomials   22 yx and

23 yx    are not yet involved. Let us try the method of non-matrix condensation [16]. This is a method of direct 
transformation of the prototype into an image, i.e., LFE Q12 (fig. 1, c) - into SFE Q10 (fig. 1, f). Internal surfaces 

( )yxN11 , and ( )yxN12 , also act as correcting ones for other surfaces. Respectively the loads  11γ and 12γ are 
distributed according to a certain "recipe" between the boundary nodes. For example, it is convenient to distribute 

12γ between nodes 1, 4, 5, 8, 10. New (alternative) bases of the function Q10 are linearly combined with the 
corresponding functions Q12 according to a rule:
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(most importantly) Q10 inherit. The main numerical characteristics are nodal loads iγ and barycentric applicatеs 

( )00Ni , . Applicates in the center of the carrier make it possible to test the second condition of hypothesis easily and 
quickly (6).
Q9 LFE:

;;,,;,,
36
1685i

36
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36
1

0ii ===== γγγ ( ) ,, 000Ni = 81i ,= ; ( ) ., 100N0 = (10)

Q16 LFE:

;,,;,,;,, 1613i
64
9125i

64
341i

64
1

iii ====== γγγ ( ) ,,
256

100Ni = 41i ,= ;

( ) ;,,, 125i
256

900Ni =−= ( ) ,,
256
8100Ni =

(11)

Q12 LFE:

;,,;,,;,,;,, 1211i
48
12109i

48
485i

48
341i

48
1

iiii ======== γγγγ ( ) ,, 000Ni =

41i ,= ; ( ) ;,,, 85i000Ni == ( ) ,,
16
100Ni −= ;, 109i = ( ) ,,

16
900Ni = 1211i ,= .

(12)

It should be noted that the Q12 mixed model inherited a physically adequate spectrum of nodal loads. This fact 
fundamentally distinguishes LFE from SFE. The influence of the "parent" pair Q9 and Q16 on the synthetic element 
Q12 is balanced by the rule of geometric averaging. For example, the total number of nodes 16912 ⋅= , the 
number of internal nodes 412 ⋅= , the angular load )/()/(/ 641361481 ⋅= . Portraits of zero level lines of 
angular surfaces (fig. 1, a, b, c) indicate that the Q12 model inherits a grid from orthogonal lines ("chessboard").

Now let us give similar information about SFE (fig. 1, d, e, f).
Q8 SFE:

;,,;,, 85i
3
141i

12
1

ii ===−= γγ ( ) ,,
4
100Ni −= 41i ,= ; ( ) ,,

2
100Ni = ., 85i = (13)

Q12 SFE:

;,,;,, 125i
16
341i

8
1

ii ===−= γγ ( ) ,,
16
500Ni −= 41i ,= ; ( ) .,,, 125i

32
900Ni == (14)

Q10 SFE:

;,,;,,;,, 109i
48
1685i

48
941i

48
5

iii =====−= γγγ

( ) ,,
32
900Ni −= 41i ,= ; ( ) ;,,, 85i

32
900Ni == ( ) ,,

2
100Ni = ., 109i =

(15)

We call the Q10 model the standard one because it is formed from standard Q8 and Q12. It inherited a physically 
inadequate spectrum { }iγ . The influence of the "parent" pair on the synthetic element Q10 is balanced by the rule of 
arithmetic averaging. For example, the number of nodes ( ),)/( 1282110 += angular loads 

( ))/()/()/()/( 8112121485 −−=− , barycentric applicate of the angular surface ( ))/()/()/()/( 1654121329 −−=− .
We will comment on the appearance of the parabola (fig. 1, f). It is interesting what features of the "parent" pair 

this second-order curve inherits. Cognitively graphical analysis of portraits (fig. 1, d, e) suggests that the infinite 
length of the parabola is from a line (fig. 1, d), and the curvature is from a circle (fig. 1, e). Another second-order 
curve, hyperbola, has the same features. This fact inspires the search for alternative bases for Q10. The inexhaustible 
potential of Pascal's scheme reminds us of the possible existence of alternatives (fig. 2, a). Monomials   22 yx and

23 yx    are not yet involved. Let us try the method of non-matrix condensation [16]. This is a method of direct 
transformation of the prototype into an image, i.e., LFE Q12 (fig. 1, c) - into SFE Q10 (fig. 1, f). Internal surfaces 

( )yxN11 , and ( )yxN12 , also act as correcting ones for other surfaces. Respectively the loads  11γ and 12γ are 
distributed according to a certain "recipe" between the boundary nodes. For example, it is convenient to distribute 

12γ between nodes 1, 4, 5, 8, 10. New (alternative) bases of the function Q10 are linearly combined with the 
corresponding functions Q12 according to a rule:
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( ) ( ) ( )yxNyxNyxN 1211 ,,, ⋅+= α (16)
New load:

1211 γαγγ ⋅+= . (17)

We order 1γ , determine the coefficient  α from (17) and find ( )yxN 1 , through formula (16). It is interesting to 
order the standard spectrum:

2
1

48
12

48
1

48
5

−=⋅+=− αα ,

Therefore, 

( ) ( )( )( )( )xy6y8x99x31y1x1
32
1yxN 1 −−−−−−−=, (18)

As you can see the non-matrix approach changed the appearance of Q10 angular surfaces. Finally, the full 
potential of Pascal's scheme is used (fig. 2, a), and the expected hyperbola appears in the portrait of the zero level 
lines (fig. 2, b). We received the base substitute SFE Q10: non-standard base with standard characteristics. It means 
that there are a lot of such models. By the way, the intermediate functions from the set (9) remain, and the angular 
functions are determined by weighted averaging (9) and (18). For example, the arithmetic average looks like:

( ) ( )( )( )9y8x9xy9yx9x18y1x1
32
1yxN 22

1 −−+++−−=, (19)

Multitude is also a hereditary property. It is transmitted through the hierarchical forms of monomials of Pascal's 
scheme. 

It is also worth giving an example of the Q10 model with a physically adequate range of nodal loads:

( ) ( )( )( ) ;,,
48
1yx91y1x1

32
1yxN 1

2
1 =⋅−−−= γ

(20)( ) ( )( )( ) ;,,
48
3yx31yx1

32
9yxN 5

2
5 =+−−= γ

( ) ( )( )
48
16y1x1

2
1yxN 10

2
10 =−−= γ,, .

In 1971 O. Zienkiewicz wrote that nodal loads could not be predicted. Today we model them on order [17, 21, 22, 
23, 24].

Leading specialists associate further development of the FEM (finite element method) with incompatible FE and 
non-polynomial functions of the form. For a long time the use of incompatible FEs was considered incorrect, 
although engineering-oriented users boldly used incompatible FEs and often obtained quite decent results. After the 
appearance of the piecewise testing procedure the attitude towards incompatible FEs changed for the better. 
However, the list of incompatible FEs that can withstand piecewise testing is growing very slowly. In the theory of 
serendipity FEs, in particular, mixed ones, the phenomenon of incompatibility has not been studied yet. Hereafter we 
will try to consider this phenomenon through the prism of heredity. Academic interest and practical need stimulate 
the search for and testing of incompatible mixed FEs. On the example of Q10 mixed element we will show two 
models of incompatible bases that can withstand piecewise testing by Irons-Razzak [18].

The mixed models Q10 considered above (fig. 1) are formed under the balanced influence of the “parent” pair Q8
and Q12. It is interesting to analyze the consequences of excessive influence of one of the elements (Q8 or Q12) 
over Q10. For example, to maximize the effect of Q8, you can deliberately include another line in the portrait of the 
zero level lines of the angular surface ( )yxN1 , of the element Q10 (fig. 3, a). If you use an ellipse passing through 
all intermediate nodes Q10 it will indicate an excessive influence of the Q12 model circle (fig. 3, b).

It is interesting that all intermediate surfaces do not differ from standard ones (model with a parabola, fig. 1, f).
All numerical characteristics (integral and local) are preserved. The angular surfaces of the models (fig. 3) now look 
like this:

a) model with two symmetrical lines

( ) ( )( )( )( );, 3y2x33y2x3y1x1
32
1yxN1 −−++−−= (21)
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b) model with ellipse

( ) ( )( )( )9y8x9y1x1
32
1yxN 22

1 −+−−=, (22)
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a) b)
Fig.3 Zero level lines of incompatible surfaces  ( )yxN1 , : (a) stereotype Q8;  (b) stereotype Q12

(areas of negative values ( )yxN1 , are hashed)

It is these surfaces ( ) 41iyxNi ,,, = that break the interelement continuity. However, incompatibility is observed 
only in the areas of boundary 1x ±= . Such models can be called "semi-compatible". This term appeared in Kyiv 
FEM school. The cause of bifurcations emergence on the boundaries 1x ±= is related to an unwanted monomial 3y
(see Pascal's scheme). Unwanted does not mean forbidden. If the model can withstand piecewise testing, it is 
recommended for use [20]. Therefore, we will study the nature of the behavior of the surface ( )yxN1 , on the 
boundary 1x −= .

The angular surface of the standard model on the boundary section 1y11x ≤≤−−= , changes according to the 
law of the square parabola:

( ) ( ) y1y
2
1y1N1 ⋅−=− , (23)

The angular surface of the model with two lines (fig. 3, a) changes according to the law of the cubic parabola:

( ) ( ) ( )y3yy1
4
1y1N1 −−⋅⋅−=− , (24)

The angular surface of the model with an ellipse on the specified section of the boundary changes according to 
the law of the cubic parabola:

( ) ( ) 2
1 yy1

2
1y1N ⋅−=− , (25)

At the control section of the boundary there is a gap of the first kind. The magnitude of the jump for the first 
model (fig. 3, a) looks like:

( ) ( )3yy
4
1y −=ϕ (26)

for the other model (fig. 3, b):

( ) ( )yy
2
1y 3 −=ϕ (27)

As you can see, in both cases the gap has the same nature. Applicates differ only in the sign and the magnitude of 
the deviation from zero. In figure 4 both curves ( )yϕ are shown, the graph of the second model (27) is shown 
dotted.

Two graphics in one figure give a simple image not only illustrative properties, but also cognitive.  Looking at 
fig. 4 we make certain that both models can withstand piecewise testing not only by the Irons-Razzak criterion, but 
also by the Patterson criterion. Here we are dealing with orthogonal polynomials. Extreme values of deviation from 
zero are reached at points )/( 31y ±= . It is at these points that the nodes of the Gauss-Legendre quadrature are 



	 Petro Guchek  et al. / Procedia Computer Science 237 (2024) 354–362� 361Author name / Procedia Computer Science 00 (2019) 000–000 7

b) model with ellipse

( ) ( )( )( )9y8x9y1x1
32
1yxN 22

1 −+−−=, (22)

7

1 2

34

5 6

8

910

7

1 2

34

5 6

8

910

a) b)
Fig.3 Zero level lines of incompatible surfaces  ( )yxN1 , : (a) stereotype Q8;  (b) stereotype Q12

(areas of negative values ( )yxN1 , are hashed)

It is these surfaces ( ) 41iyxNi ,,, = that break the interelement continuity. However, incompatibility is observed 
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FEM school. The cause of bifurcations emergence on the boundaries 1x ±= is related to an unwanted monomial 3y
(see Pascal's scheme). Unwanted does not mean forbidden. If the model can withstand piecewise testing, it is 
recommended for use [20]. Therefore, we will study the nature of the behavior of the surface ( )yxN1 , on the 
boundary 1x −= .

The angular surface of the standard model on the boundary section 1y11x ≤≤−−= , changes according to the 
law of the square parabola:
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At the control section of the boundary there is a gap of the first kind. The magnitude of the jump for the first 
model (fig. 3, a) looks like:
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for the other model (fig. 3, b):
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As you can see, in both cases the gap has the same nature. Applicates differ only in the sign and the magnitude of 
the deviation from zero. In figure 4 both curves ( )yϕ are shown, the graph of the second model (27) is shown 
dotted.

Two graphics in one figure give a simple image not only illustrative properties, but also cognitive.  Looking at 
fig. 4 we make certain that both models can withstand piecewise testing not only by the Irons-Razzak criterion, but 
also by the Patterson criterion. Here we are dealing with orthogonal polynomials. Extreme values of deviation from 
zero are reached at points )/( 31y ±= . It is at these points that the nodes of the Gauss-Legendre quadrature are 
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located. In such cases, it is said that the mathematical model has side adequacy. In terms of the speed of convergence 
of the finite elemental solution to the exact one, the first model is more efficient.

Fig. 4. Change of jump ( )yϕ at the gap boundary 1x −=

Now that the incompatibility has receded into the background, we will point to another advantage of incompatible 
models (fig. 3). Simplicity and clarity of portraits of zero level lines open the way to direct geometric modeling of 
serendipity elements. And reflections over fig. 4 stimulate the attempt to "go to zero". It seems that it is possible to 
choose the weighting coefficients so that the weighted averaging of the two incompatible surfaces (21) and (22) will 
lead to a compatible surface ( )yxN1 , . Judging from fig. 4 and formulas (26) and (27), the coefficients should be 2:1.
Let us denote the angular function of the first model by ( )( )yxN a

1 , and give it a coefficient 32 / , we will denote the 
second function by ( )( )yxN b

1 , with a coefficient 31/ . Hereafter we will find the weighted average of the surfaces (21) 
and (22):

( ) ( )( ) ( )( )yxN
3
1yxN

3
2yxN b

1
a

11 ,,, ⋅+⋅= (28)

Skipping the intermediate transformations, we obtain:

( ) ( )( )( )9y8x9y1x1
32
1yxN 2

1 −−−−=, (29)

This is a standard angular surface of the element Q10, which is compatible. Yet, this time the model with a 
parabola comes from another "parent" pair (fig. 3). However, heredity is noticeable. The infinite length of the 
parabola is inherited from the lines (fig. 3, a), and the curve - from the ellipse (fig. 3, b). Let us recall that the 
integral and local numerical characteristics of the standard model Q10 are also inherited.

3. Conclusions

Mixed models of SFE in terms of hereditary properties are considered for the first time. The example of the Q10 
model shows that the result of hybridization is influenced not only by the “parent” pair SFE (Q8 and Q12), but also 
by the LFE prototype. The cases in which numerical characteristics are insensitive to changes of surface relief attract 
attention. This example is illustrated by the new model Q10 obtained in the work. The non-matrix condensation 
procedure generates a lot of mixed Q10 models, including those with physically adequate nodal load spectra. This 
conclusion applies to all SFEs.
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