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Abstract

This study focuses on the creation and examination of an intelligent auto-
mated control system for UAVs utilized in meteorological measurements
based on the Internet of Things (IoT) and mobile technologies. The proposed
system enables the achievement of commendable flight control standards for
UAVs during meteorological data gathering, thereby markedly enhancing
the overall effectiveness of meteorological stations. Notably, this system
is constructed on the foundation of three integrated principles: (a) a hier-
archical two-level approach for control and data collection based on IoT
and mobile technologies, (b) a straightforward and dependable fuzzy logic
control characterized by high performance, and (c) the effective optimization
of fuzzy control components through the application of bio-inspired multi-
agent computing techniques. To assess the performance of the suggested
intelligent system, this study involves the creation and bioinspired optimiza-
tion of the climb speed fuzzy controller. Subsequent simulation experiments
are conducted to evaluate the automatic control of UAV’s flight processes
under different modes. The analysis of the simulation results indicates that
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the developed system, utilizing fuzzy control, exhibits superior efficiency
and higher quality metrics when compared to existing counterparts, espe-
cially in diverse flight scenarios such as uniform climbing, gradual approach
to designated altitude levels, and smooth landing during meteorological
measurements.

Keywords: UAV control system, meteorological measurements, climb
speed control, intelligent control, fuzzy controller, Internet of Things, mobile
technologies.

1 Introduction

Unmanned Aerial Vehicles (UAVs), commonly known as drones, have
become pivotal across a multitude of industries due to their versatility and
capacity to perform tasks that were once logistically challenging or even
impossible [1]. Their significance extends far beyond monitoring tasks,
encompassing a broad spectrum of applications. In the realm of environmen-
tal conservation and monitoring, UAVs play a vital role [2]. They provide a
bird’s-eye view of ecosystems, allowing researchers to track wildlife pop-
ulations, monitor deforestation, and assess the health of ecosystems. This
aids in the formulation of conservation strategies and helps mitigate the
impacts of human activities on natural habitats. In the field of infrastruc-
ture and construction, UAVs have revolutionized surveying and mapping
processes [3]. They can quickly and accurately create 3D models of con-
struction sites, monitor progress, and identify potential issues, all of which
contribute to streamlined project management and cost savings. In urban
planning, drones aid in city modeling and traffic analysis, enabling more
efficient city designs and transportation systems. In emergency response and
disaster management, UAVs are invaluable tools [4, 5]. They can swiftly
assess damage in hard-to-reach areas, locate survivors, and identify potential
hazards, which significantly enhances the effectiveness and safety of response
efforts. Furthermore, in industries like energy, drones are used for inspecting
infrastructure such as power lines, wind turbines, and oil rigs [6, 7]. This
reduces the need for risky manual inspections and helps ensure the reliability
and safety of energy production. Moreover, another key area where UAVs
have made a significant impact is agriculture [8, 9]. With the ability to collect
precise data on crop health, soil conditions, and irrigation needs, drones have
enabled farmers to make informed decisions, optimize resource allocation,
and ultimately increase crop yields. This has not only improved food security
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but also reduced the environmental footprint of agriculture through more
efficient resource utilization.

Looking ahead, the prospects for UAVs are promising. As technology
advances, drones are becoming more sophisticated, with capabilities for
tasks like autonomous flight, long-endurance missions, and improved sensing
capabilities. In the transportation sector, the concept of urban air mobility
is gaining traction, with the potential for drones to revolutionize urban
transportation and logistics [10, 11]. This includes applications like air taxis,
medical supply delivery, and rapid transportation of goods. In general, the
importance of unmanned aerial vehicles in today’s world is multi-faceted
and spans a wide array of industries. Their prospects are vast, promising
even greater advancements in efficiency, safety, and accessibility. However,
addressing the challenges associated with their integration into society is cru-
cial to ensuring that the benefits they offer are maximized while minimizing
potential risks. With thoughtful planning and responsible implementation,
UAVs have the potential to transform various aspects of our lives, making
them a cornerstone of modern technology.

The use of drones when performing meteorological measurements
deserves special attention [12–14]. In this field, UAVs have become invalu-
able tools, revolutionizing the way we collect critical atmospheric data. Tra-
ditional meteorological measurements are usually taken from fixed ground
stations, satellites and weather balloons. While these techniques provide
valuable information, UAVs offer unique advantages that greatly enhance
our ability to monitor and understand weather conditions. One of the key
advantages of using UAVs for meteorological measurements is their ability to
access regions of the atmosphere that are difficult or dangerous for humans to
reach. This includes flying through turbulent or extreme weather conditions,
as well as conducting measurements in remote or hazardous locations. UAVs
equipped with specialized sensors can ascend to high altitudes or descend into
lower atmospheric layers, providing a more comprehensive view of the ver-
tical profile of the atmosphere. Furthermore, UAVs offer a level of flexibility
and agility that surpasses traditional methods. They can be rapidly deployed
to respond to evolving weather events or to investigate specific atmospheric
phenomena. This agility is especially critical in situations where rapid data
collection is essential for accurate weather forecasting, emergency response,
or disaster management. In addition to their versatility, UAVs can be equipped
with a diverse array of meteorological sensors, allowing for precise and multi-
dimensional data collection. These sensors can measure parameters such as
temperature, humidity, pressure, wind speed and direction, as well as aerosol
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and gas concentrations. This wealth of information enables meteorologists
to create high-resolution models and forecasts, leading to more accurate and
timely weather predictions.

Moreover, UAVs facilitate the development of localized weather sta-
tions [15]. These stations can be strategically positioned to monitor specific
microclimates, urban heat islands, or other localized weather phenomena.
This granular data is invaluable for applications like urban planning, agricul-
ture, and environmental monitoring, where detailed weather information at a
small scale is essential. Thus, the use of unmanned aerial vehicles for meteo-
rological measurements and stations represents a significant advancement in
our ability to monitor and understand the Earth’s atmosphere. Their versa-
tility, agility, and capacity for precise data collection make them invaluable
assets for meteorologists and weather researchers. As technology continues
to advance, UAVs are poised to play an increasingly pivotal role in enhancing
our ability to predict and respond to weather events, ultimately contributing
to greater public safety and improved quality of life.

One critical aspect that underpins the functionality and capabilities of
UAVs in meteorological measurements is their remote monitoring and con-
trol systems, which incorporate a sophisticated array of sensors, wireless
technologies, and integration with the Internet of Things (IoT) and mobile
technologies [16, 17]. These technological synergies amplify the capabilities
of UAVs, allowing them to collect vital atmospheric data with unprecedented
accuracy and timeliness. Sensors equipped on UAVs for meteorological
purposes play a pivotal role in data acquisition. These sensors, including high-
resolution temperature, humidity, and pressure gauges, as well as specialized
instruments for air quality assessments, enable UAVs to capture an extensive
array of atmospheric parameters. The integration of cutting-edge sensors not
only ensures the accuracy of collected data but also empowers meteorologists
to gain deeper insights into weather patterns and phenomena. Wireless tech-
nologies serve as the lifeline connecting UAVs with ground control stations.
This real-time data transmission capability enables meteorologists to receive
and analyze information without delay, allowing for swift adjustments to
flight plans or data collection strategies based on evolving atmospheric con-
ditions. Moreover, wireless communication facilitates seamless coordination
between multiple UAVs deployed for simultaneous measurements, enabling
a more comprehensive assessment of the meteorological landscape.

The integration of UAVs into the IoT ecosystem is further enriched by
the incorporation of mobile technologies and devices, significantly enhancing
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their capabilities for meteorological measurements. Through seamless con-
nectivity with IoT, UAVs can establish interfaces with an extensive network
of sensors, weather stations, and mobile devices. This integration forms a
dynamic and interconnected system, facilitating UAVs in exchanging data
not only with ground-based stations and satellites but also with various IoT-
enabled and mobile devices. This synergy empowers UAVs to contribute to
a more comprehensive and real-time meteorological data collection process.
The utilization of mobile technologies ensures a broader reach and accessibil-
ity, enabling UAVs to efficiently communicate and share data with a diverse
array of devices. The collaborative network formed by UAVs, ground-based
stations, satellites, and mobile devices enhances the accuracy, timeliness, and
scope of the information collected during meteorological missions. More-
over, the assimilation of UAV-derived data into broader weather forecasting
models becomes even more seamless with the inclusion of mobile tech-
nologies. This comprehensive integration leverages the strengths of UAVs,
IoT, and mobile devices to create a synergistic framework that optimizes
the collection, transmission, and utilization of meteorological data in an
increasingly interconnected world.

This convergence of technologies has transformative implications for
meteorological research and forecasting. UAVs equipped with advanced
remote control systems, state-of-the-art sensors, IoT connectivity, and mobile
technologies can be deployed to monitor dynamic weather patterns in real
time. This capability is particularly crucial in situations where rapid data
collection and analysis are imperative for accurate weather predictions, early
warning systems, and disaster preparedness.

However, when using modern IoT-based UAVs systems for meteorologi-
cal measurements, along with the difficulties of ensuring confidentiality and
security of remote data transmission, there is a problem of implementing
effective control of basic processes in automatic mode. Since the drones’
flight processes in various modes are quite complex, traditional automatic
control algorithms in many cases do not allow achieving the desired results
and have significant limitations. This is because these processes depend
on many non-stationary, non-linear parameters with uncertainties that are
determined by changing characteristics of the UAV and the environment,
weather and climatic conditions, etc. At the same time, cutting-edge research
shows that intelligent algorithms are increasingly being implemented in
UAVs’ control systems [18, 19]. Moreover, fuzzy logic algorithms are espe-
cially effective when integrated into IoT-based drones’ control systems as
they harness the power of imprecise and uncertain data to make informed,
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context-aware decisions, mirror human thinking processes, and demonstrate
prowess in addressing the complexities and uncertainties [20, 21].

This study focuses on the development and research of the advanced IoT-
based fuzzy control system of the UAV for meteorological measurements.
The remainder of the paper is structured as follows. Section 2 provides a
succinct overview of the relevant literature in the studied domain and outlines
the primary objective of this research. Moving forward, Section 3 elaborates
on the step-by-step progression of creating the innovative IoT-based fuzzy
control system that is being proposed. Subsequently, Section 4 showcases
the outcomes obtained from optimization, simulation and evaluating the
efficiency of the devised fuzzy system in a specific context. Lastly, Sec-
tion 5 concludes the work and suggests potential pathways for forthcoming
research.

2 Brief Literature Review

In recent years, research in unmanned aerial vehicles for meteorological
measurements has witnessed significant strides, with a focus on enhanc-
ing their capabilities for more accurate and comprehensive data collection
[12, 22–24]. One prominent research direction has been the refinement of
sensor technology for meteorological applications [25–27]. There has been
a concerted effort to develop specialized sensors that can capture a wide
range of atmospheric parameters with high precision. These include sen-
sors for temperature, humidity, pressure, wind speed and direction, as well
as more advanced instruments for measuring parameters like aerosols and
gas concentrations. Additionally, advancements in sensor miniaturization and
integration have enabled UAVs to carry a diverse suite of sensors, allowing
for multi-dimensional data collection during flights. This progress is vital
in improving the quality and resolution of meteorological data gathered
by UAVs.

Another critical research focus is on the development of sophisticated
data assimilation and modeling techniques [13, 28–30]. Integrating data col-
lected from UAVs into meteorological models is essential for enhancing the
accuracy of weather forecasts and climate models. Researchers are working
on methodologies to effectively integrate UAV-derived data with data from
other sources, such as ground-based weather stations and satellites. Addition-
ally, advancements in numerical weather prediction models are being pursued
to better incorporate high-resolution data from UAVs, leading to more precise
and reliable weather forecasts.
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Furthermore, there is a strong emphasis on improving UAV endurance
and range for extended missions in meteorological research [31–33].
Research in this area is aimed at developing more energy-efficient propulsion
systems and exploring alternative power sources, such as solar energy, to
increase the operational capabilities of UAVs. Also, investigations into inno-
vative propulsion technologies are conducted, including electric and hybrid
systems, as well as exploring advancements in materials and aerodynam-
ics [31]. By extending flight duration and range, UAVs can cover larger
geographic areas and provide a more comprehensive view of the atmosphere,
ultimately leading to more accurate and timely meteorological data.

Thus, recent research in UAVs for meteorological measurements has
centered on enhancing sensor technology, advancing data assimilation tech-
niques, and improving UAV endurance and range. These areas of focus are
instrumental in elevating the capabilities of UAVs for meteorological appli-
cations, ultimately contributing to more accurate weather predictions and a
deeper understanding of atmospheric dynamics. However, in the scientific
literature at the moment, insufficient attention is paid to the development
and improvement of automatic control systems of drones for meteorologi-
cal measurements. The design and implementation of advanced IoT-based
control systems would enable UAVs to have enhanced decision-making capa-
bilities, allowing them to navigate complex environments, adapt to changing
conditions, and perform meteorological measurement tasks with minimal
human intervention [34, 35]. This includes the integration of various artificial
intelligence [36, 37] and machine learning [38] algorithms to allow the UAV
to learn from data and improve its performance over time. As a result, such
integration will make it possible to create universal mobile meteorologi-
cal stations based on UAVs, capable of performing tasks in dynamic and
unpredictable conditions.

So, in recent years, there has been a notable shift towards the imple-
mentation of intelligent control systems for the automation of UAVs, and
among these, systems founded on fuzzy logic have emerged as particularly
promising [39–41]. Fuzzy logic control leverages a flexible and adaptive
approach to decision-making, allowing for nuanced responses to complex
and uncertain environments [42–44]. Unlike traditional binary logic, which
relies on precise, yes-or-no conditions, fuzzy logic enables UAVs to navigate
through dynamic and rapidly changing scenarios with a degree of subtlety and
adaptability that is essential for real-world applications. One of the key advan-
tages of fuzzy logic-based control systems is their ability to handle imprecise
or uncertain information. In real-world environments, where factors like wind
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gusts, sensor noise, and variable terrain can introduce uncertainties, the rigid
logic of traditional control systems can be limiting. Fuzzy logic, on the other
hand, excels at processing and reasoning with imprecise data, enabling UAVs
to make informed decisions even in less-than-ideal conditions [45–47]. This
adaptability is crucial in applications ranging from precision agriculture,
where UAVs must respond to ever-changing crop conditions, to disaster
response, where rapidly evolving situations demand quick and adaptable
decision-making. Furthermore, fuzzy logic control systems offer a degree of
interpretability and transparency in decision-making [48]. This is essential for
building trust in autonomous systems, particularly in industries where safety
and accountability are paramount. Engineers and operators can understand
and fine-tune the rule sets that govern the UAV’s behavior, providing a
level of human oversight while still harnessing the benefits of automation.
As UAVs continue to evolve and become integral to various industries, the
intelligent control systems, particularly those based on fuzzy logic, represent
a significant step forward in ensuring safe, reliable, and adaptable operations.

Moreover, bio-inspired multi-agent approaches have shown great promise
in creating highly efficient fuzzy control systems for UAVs [20, 35]. Among
these, algorithms of ant colony optimization (ACO) [49], artificial bee colony
(ABC) [50], particle swarm optimization (PSO) [51], bacterial foraging opti-
mization (BFO) [52], and grey wolf optimization (GWO) [53] have proven
to be particularly effective for solving diverse search problems. These bio-
inspired methods offer several advantages and appealing features: they excel
in avoiding local minima compared to conventional optimization techniques,
employ derivation-free mechanisms, maintain flexibility and relative sim-
plicity in their basic procedures, and demonstrate easy adaptability to a
wide range of real-world optimization challenges. Additionally, they can be
seamlessly hybridized with various types of local search techniques, allowing
for a rational integration of global and local search strategies [54]. This fusion
leads to the development of specific hybrid methods that exhibit improved
efficiency in locating global optima during the optimization process [55–57].

Therefore, it is advisable to create an IoT-based automatic control system
for UAVs employed in meteorological measurements by harnessing the intel-
ligent principles of fuzzy logic and bio-inspired multi-agent computing. This
approach guarantees the overall enhancement of efficiency for meteorological
stations, more accurate weather predictions and a deeper understanding of
atmospheric dynamics.

Hence, the primary objective of this paper is the development and effec-
tiveness study of the intelligent control system of the UAV for meteorological
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measurements that integrates principles of IoT, fuzzy logic and bio-inspired
multi-agent computing.

3 Development of an Intelligent IoT-based Control System
of the UAV for Meteorological Measurements

3.1 Main Tasks and Designing Principles

The main purpose of a UAV for meteorological measurements is to take
off at the right time, rise to a predetermined altitude, take measurements of
all the necessary atmospheric parameters and land at the initial site. In this
case, operations can be performed to measure all parameters with a certain
altitude step while uniformly climbing to a given altitude value, or to take
all sensor readings at a certain altitude during a certain period of time. Also,
sensor readings can be taken in uniform increments while descending on the
way back. Herewith, the main measurement tasks include measuring such
atmospheric parameters as temperature, pressure, humidity, wind speed and
direction, presence/absence of precipitation, and presence/absence of clouds.
In most cases, these parameters should be measured using appropriate sensors
once at each specific altitude value during a uniform climb or descent (for
example, every 50 meters when climbing from 0 to 1000 meters, as well as
when further descending to 0 meters) to determine the distribution pattern
of the values of the main quantities over altitude. Also, if required, these
parameters can be measured at one fixed altitude for a certain period of
time with a given frequency (for example, at an altitude of 500 meters
for 10 minutes with sensor readings taken every 10 seconds) to determine
the dynamics of changes in the values of the main quantities over time at
one fixed point. Wherein, all measured values of atmospheric parameters
must be transmitted in real time through a remote server to a ground-based
meteorological station for further processing, analysis and storage.

Moreover, to ensure the fulfillment of all the above measurement tasks, it
is necessary to perform the following flight tasks: take-off; climbing at a given
speed with constant values of horizontal coordinates; descending with a given
speed at constant values of horizontal coordinates; smooth approach to a fixed
altitude value in the final stage of the climb; holding at a given point and a
fixed altitude; smooth landing. Thus, to successfully perform all the presented
measurement and flight tasks, which together are quite complicated, it is
necessary to design a highly efficient intelligent IoT-based control system.

In turn, the proposed by the authors intelligent system for automatic
control of the UAV for meteorological measurements should be created based
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on the three main principles: (1) hierarchical two-level control and data
acquisition based on IoT and mobile technologies; (2) simple and reliable
fuzzy logic control with high performance; (3) efficient optimization of fuzzy
control devices based on bio-inspired multi-agent computing.

In turn, hierarchical two-level IoT-based control and data acquisition
represent a sophisticated fusion of control strategies and technological
advancements in the context of meteorological measurements. This prin-
ciple integrates hierarchical control, wherein tasks are divided into local
and higher-level optimization responsibilities, with the transformative capa-
bilities of remote control and data acquisition based on IoT and mobile
technologies. In this framework, localized sensors (of various meteorolog-
ical quantities and basic parameters characterizing the flight state of the
UAV) and actuators (UAV’s rotor propulsors) operate at the lower level,
collecting real-time data and executing immediate actions to address on-field
dynamics. Simultaneously, the higher level, located remotely at a ground
weather station, focuses on holistic optimization strategies derived from
aggregated data insights. This hierarchical organization maximizes opera-
tional efficiency, enabling agile responses to evolving conditions while also
facilitating strategic decision-making driven by a broader perspective.

At the core of this approach lies the power of the Internet of Things,
which revolutionizes UAV control by fostering a network of interconnected
devices. The integration of IoT technologies empowers UAV operators with
remote monitoring, control, and data-driven insights. By leveraging real-time
data streams from sensors, and other IoT-enabled devices, the upper level
gains comprehensive visibility into critical parameters of weather patterns,
flight altitude and speed, etc. This holistic view enables precise control,
efficient resource allocation, and predictive analytics, resulting in enhanced
general efficiency of meteorological stations. Hierarchical two-level IoT-
based control thus embodies the synergy of hierarchical remote control and
data acquisition principles with the transformative potential of IoT, pro-
pelling intelligent UAV systems into a realm of unprecedented efficiency and
sophistication.

The hierarchical two-level IoT-based control implies the presence of the
lower level of local control and the upper level of remote control to ensure
successful implementation of the UAV flight process in the real-time mode
[16, 17]. In turn, at the lower (local) level of control, stabilization and
automatic regulation of the set values of flight altitude, speed and horizontal
coordinates is carried out using installed at this level sensors, actuators, and
controllers. This level receives data on the set value of flight altitude, speed
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and horizontal coordinates from the upper level of control and also transmits
to it the current real values of these parameters and all measured meteo-
rological parameters via the Internet. Moreover, the intelligent controllers
based on fuzzy logic are located at this level along with actuators and sensors
installed directly on the UAV, to ensure reliable and uninterrupted conduction
of the flight and meteorological measurements in the event of temporary or
long-term loss of communication with the upper level of control.

The upper control level includes a remote server, to which all data from
lower-level sensors is received via the Internet with subsequent storage, as
well as a specialized human-machine interface (HMI) for the operator of the
meteorological station [58]. The given HMI allows the operator to remotely
monitor all the system’s parameters, set the setpoints for flight altitude,
climb and descent speed, as well as horizontal coordinates depending on the
operating mode, change the settings of fuzzy controllers, and, if necessary,
intervene in the flight control processes in manual mode. This interface can be
installed on a computer, tablet or smartphone to provide remote access via the
Internet to monitoring and control of the flight and measurement processes to
the system’s operator or external experts anywhere in the world and at any
time. Also, in emergency cases, SMS messages can be sent to the operator’s
phone.

The principle of simple and reliable fuzzy logic control with high per-
formance consists in development and implementation of highly efficient
devices for fuzzy control of flight altitude, climb and descent speed, as well
as horizontal coordinates. In turn, the high efficiency of fuzzy controllers
lies in their exceptional adaptability to complex and uncertain systems,
making them a valuable asset in various fields, including automatic control
of unmanned aerial vehicles of various types [20, 21, 39]. Fuzzy controllers
excel at capturing the nuances of imprecise and non-linear relationships
within dynamic environments. By utilizing linguistic variables and intuitive
rules, these controllers mimic human decision-making processes, enabling
them to effectively handle the vagaries and uncertainties inherent in complex
plants [40–42]. Such complex plants may include robotic systems, power
plants, chemical industry facilities, alternative energy installations, etc. [48,
59–61]. This adaptability translates into robust performance, allowing fuzzy
controllers to provide accurate and responsive control in scenarios where
traditional automation approaches may falter. As a result, their efficiency
in optimizing UAV’s flight processes, such as spatial coordinates control,
positions fuzzy controllers as a powerful tool for enhancing productivity and
sustainability in modern practices of meteorological measurements.
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First of all, these fuzzy devices must be placed directly on the control
object (UAV) to ensure reliable implementation of the flight control process
with high performance, regardless of the upper control level. Therefore, the
fuzzy controller must be embedded and have a fairly simple rule base to avoid
the increase in the cost of hardware implementation of the local level. Thus,
in this case, it is advisable to use separate controllers for each coordinate with
no more than two or three inputs each to simplify their rule bases.

Finally, the principle of efficient optimization of UAV’s fuzzy control
devices of the lower level implies the conduction of parametric or structural
optimization procedures by means of bio-inspired multi-agent computing
techniques to improve control accuracy, speed and overall performance.
These procedures can be carried out both during the initial synthesis of
UAV’s fuzzy controllers and in the process of their subsequent operation
when it becomes necessary to improve control quality indicators. In turn,
the powerful optimization units should be located in the remote web server to
speed up the optimization procedures and simplify the hardware of the local
level.

3.2 Basic Structure, Human-machine Interface and Hardware
Implementation

Taking into account all the above tasks and principles, the hierarchical intel-
ligent UAV’s control system based on IoT and fuzzy logic for meteorological
measurements should have a generalized structure, as shown in Figure 1.

In this system, the lower level of local control includes specific sensors
for measuring the following atmospheric parameters: temperature, pressure,
humidity, wind speed and direction, presence/absence of precipitation, and
presence/absence of clouds. Also, at this level, there are sensors necessary
to provide flight control of the UAV, including an altitude sensor, the three-
axis accelerometer and gyroscope, a GPS module and a laser rangefinder to
implement a smooth landing. In addition, this level includes the main UAV’s
actuators (rotor propulsors), fuzzy controllers for main controlled variables
implemented on the local computer, and video cameras that allow the operator
to visually monitor the flying area.

In turn, the local computer performs the functions of acquisition data from
all sensors and transmitting them to the upper level, as well as implementing
fuzzy automatic control of the main system variables (altitude, climb speed,
and horizontal coordinates) in accordance with the received setpoints from
the upper level. To communicate with the upper level of monitoring and
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Figure 1 Generalized basic structure of the hierarchical intelligent UAV’s control system
based on IoT and fuzzy logic for meteorological measurements.
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control the local computer has the Internet connection organized through a
4G communication module.

At the upper level of control and monitoring, there is a remote server and
the ground-based meteorological station that collects and stores all informa-
tion sent from the lower level. This server can be connected via the Internet
to desktop computers, laptops, tablets or smartphones and other mobile
devices, which, using an installed specialized HMI allow the operator to
monitor all the system’s parameters and implement the control actions of the
upper level. Depending on the necessary flight mode to carry out the certain
meteorological measurements, the operator must set the setpoints for altitude,
climb speed, etc., which the system will subsequently maintain automatically.
Moreover, depending on the required quality indicators and at a significant
change in the operating conditions, the operator can change the settings of
fuzzy controllers (parameters of membership functions of linguistic terms,
antecedents and consequents of the rule base, types of aggregation, activation,
accumulation and defuzzification procedures) using the certain optimization
procedures.

Moreover, external experts with access can also connect to the system
from laptops, tablets or smartphones to monitor the key meteorological
parameters in the real time mode. At the same time, only the main operator
has the functions of setting the necessary setpoints for main controlled
variables and adjusting fuzzy controllers.

The human-machine interface developed by the authors for the main
desktop computer of the operator of a ground-based meteorological station
is presented in Figure 2.

The given interface (Figure 2) allows the operator to monitor the mea-
sured meteorological parameters and main parameters of the UAV’s flight,
as well as enter the specified values of the controlled quantities (maximum
climbed altitude, climb speed, measurement mode and polling of sensors).
It also has buttons to start and stop the flight, as well as return to base if
necessary.

In addition, the designed HMI for mobile devices has the form shown
in Figure 3. This interface allows external experts to monitor the main
parameters of meteorological measurements, as well as the flight parameters
of the UAV in real time from anywhere in the world with Internet access.
The presented interfaces are meticulously designed and implemented within
the PHPStorm integrated development environment. Utilizing a harmonious
blend of web programming languages, the platform predominantly incorpo-
rates HTML for structuring the content, JavaScript for dynamic interactions
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Figure 2 HMI for the main desktop computer.

and real-time updates, and PHP for server-side data processing and inte-
gration. This synergistic confluence of technologies ensures a seamless,
user-centric experience, providing real-time telemetry and controls for drone
operations. In addition, the developed interfaces can be easily adjusted if it
is necessary to make any changes or clarifications in the operation of the
proposed system.

For the hardware implementation of the developed hierarchical intelligent
UAV’s control system based on IoT and fuzzy logic, the following measuring
and control equipment is used:

(a) for carrying out meteorological measurements: temperature sensor
DS18B20 (operating range: −55◦C. . .+125◦C, accuracy: ±0.5◦C),
atmospheric pressure sensor BMP280 (operating range: 300. . . 1100 hPa,
accuracy: ±1.0 hPa), humidity sensor DHT22 (operating range:
0. . . 100%, accuracy: ±2%), wind speed and direction sensor Peet
Bros Anemometer (speed operating range: 0–100 m/s, speed accuracy:
±0.5 m/s, direction operating range: 0–360◦, direction accuracy: ±3◦),
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Figure 3 HMI for mobile devices.

rain detection sensor RainDrop Sensor, snow detection sensor Snow
Depth Sensor SR50A, cloud detection sensor LiDAR-Lite v3;

(b) for carrying out flight support: altimeter MS5611 (operating range:
0 m. . . 10000 m, accuracy: ±0.1 m), three-axis gyroscope and
accelerometer MPU-6050, Neo-6M GPS Module, laser rangefinder
TF-Luna Lidar Range Finder (operating range: 0.1 m. . . 8 m, accu-
racy: ±6%), Arducam Mini Module Camera Shield 5MP Plus OV5642
Camera Module.

(c) as the local computer, the Arduino Due AT91SAM3X8E ARM Cortex-
M3 is used with 54 input/output ports. Moreover, the expansion board
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for sensors Arduino Sensor Shield V5 is used, which has I2C and UART
interfaces, as well as digital and analog ports for sensors. Also, the
module SIM7600E-H 4G HAT is used as a communication module with
a data transfer rate of 150 Mbps.

In the considered hierarchical IoT-based control system, the peculiarities
of the fuzzy automatic control implementation of the UAV’s flight process
directly play the most important role in ensuring high-quality indicators and,
as a result, efficient implementation of the meteorological measurements.
Next, we will consider in detail the development of the functional structure
and fuzzy controllers for the intelligent control system of the UAV for
meteorological measurements.

3.3 Functional Structure and Fuzzy Controllers for the UAV’s
Intelligent Control System

In this case, the designing of the functional structure and fuzzy controllers
is carried out for the quadrotor unmanned aerial vehicle. Herewith, the
intelligent control system based on fuzzy logic should have four channels for
controlling spatial coordinates: (1) flight altitude z and vZ speed of altitude
change during climb or descent; (2) longitudinal-horizontal coordinate x;
(3) transverse-horizontal coordinate y; (4) yaw φ. In turn, the first channel
includes two controlled variables simultaneously (z and vZ), since the climb
speed (speed of altitude change) vZ is an internal slave controlled variable
of the altitude z. Moreover, the first control channel is the main one in
this system and the most important, since it allows the UAV to move to
the desired altitude and at the required climb speed to carry out the main
system’s task – performing meteorological measurements. The remaining
three control channels are auxiliary and are used to stabilize the UAV at
a given point in the horizontal plane so that it does not move away from
the take-off location when climbing and further descending. In addition, in
each of all four control channels considered, the actuators are four rotors of
the quadcopter (UAV). Therefore, the presented system is a multi-connected
automatic control system.

Thus, the developed functional structure of the four-channel multi-
connected fuzzy automatic control system of the UAV for meteorological
measurements is shown in Figure 4.

The following designations are used in Figure 4: UCL is the upper control
level; CZ is the flight altitude controller (z coordinate controller); FCX, FCY,
and FCφ are the fuzzy controllers for coordinates x, y, and φ; FCVZ is the
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Figure 4 Functional structure of the four-channel multi-connected fuzzy automatic control
system of the UAV for meteorological measurements.

climb speed fuzzy controller (vZ coordinate controller); CSCU is the control
signal converting unit; Sψ, Sθ, SVZ, Sφ, SY, SX, and SZ are the sensors of roll
angle ψ, pitch angle θ, climb speed vZ, yaw angle φ, transverse-horizontal
coordinate y, longitudinal-horizontal coordinate x, and flight altitude z; R1,
R2, R3, and R4 are the UAV’s rotor propulsors; θR, ψR, zR, xR, yR, φR, and
vZR are the real values of the corresponding quantities that are measured by
sensors; uX, uY, uφ, and uZ are the set values of the coordinates x, y, φ, and
z that come from the UCL; uψR, uθR, uVZR, uφR, uYR, uXR, and uZR are the
output signals of the corresponding sensors Sψ, Sθ, SVZ, Sφ, SY, SX, and SZ;
uVZ, uXC, uYC, uφC, and uVZC are the output signals of the corresponding
controllers CZ, FCX, FCY, FCφ, and FCVZ; u1, u2, u3, and u4 are the control
signals that come from the CSCU to the corresponding UAV’s rotors; F1, F2,
F3, and F4 are the lifting force values of the corresponding UAV’s rotors; FD

is the vector of disturbances that act on the UAV; εZ, εX, εY, εφ, and εVZ are
the errors values of the corresponding control coordinates z, x, y, φ, and vZ.
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The UAV control system with the presented functional structure uses an
altimeter, a three-axis accelerometer, a GPS module and a laser rangefinder
to measure coordinates x, y, z, and vZ. In turn, a three-axis gyroscope is used
to measure angles θ, ψ, and φ.

Since a quadrotor UAV is a multi-connected control plant, the CSCU is
used to convert the output signals of the fuzzy controllers (uXC, uYC, uφC,
uVZC) into direct control signals for each rotor (u1, u2, u3, u4). In turn, the
given converting unit implements the following expression

u1 = uVZC − uXC − uYC + uϕC;

u2 = uVZC − uXC + uYC − uϕC;

u3 = uVZC + uXC + uYC + uϕC;

u4 = uVZC + uXC − uYC − uϕC.

(1)

The climb speed fuzzy controller FCVZ receives the error signal for
control of the climb speed εVZ as an input, calculates its derivative dεVZ

dt
and integral

∫
εVZdt, and based on these three signals, using a certain fuzzy

inference engine (FIE), calculates the corresponding control signal uVZC.
As for the other three auxiliary fuzzy controllers (FCX, FCY, FCφ), it is
sufficient to use only the control errors of the corresponding coordinates
(εX, εY, εφ) and their derivatives (dεXdt , dεY

dt , dεϕ
dt ) as input signals in their

FIEs. In addition, to increase the control accuracy in the controllers FCX and
FCY of the longitudinal-horizontal x and transverse-horizontal y coordinates,
additional internal loops for slave control of the angles θ and ψ can be used.
To do this, it is necessary to use signals uθR and uψR from sensors Sθ and Sψ
as additional feedback (are shown with dotted lines in Figure 4). Herewith,
the resulting control signals uXC and uYC of the controllers FCX and FCY

will be calculated based on expressions (2) and (3), respectively:

uXC = kPθ(u
′
XC − uθR) + kDθ

d(u′XC − uθR)

dt
; (2)

uYC = kPψ(u
′
YC − uψR) + kDψ

d(u′YC − uψR)

dt
, (3)

where u′XC is the output signal of the FIE of the x coordinate controller; u′YC
is the output signal of the FIE of the y coordinate controller; kPθ, kDθ, kPψ,
kDψ are the proportional coefficients of the corresponding internal control
loops.

In this case, dependencies (2) and (3) represent proportional-differential
(PD) control laws in the internal slave circuits of the roll and pitch control.
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Finally, the flight altitude controller (z coordinate controller) CZ performs
the functions of determining the required speed of climb or descent vZ
(corresponding to the signal uVZ), depending on the set z (corresponding to
the signal uZ) and actual zR flight altitude of the UAV. Thus, the current
value vZ is defined based on the error value εZ using the pre-established by
the operator dependencies (4).

In turn,

vZ =



vZS, at εZ > εZS;

(z − zR)

Tc
, at 0 < εZ ≤ εZS;

−vZS, at εZ < −εZS;

(z − zR)

Td
, at − εZS ≤ εZ < 0,

(4)

where vZS is the fixed (set) speed of climb or descent, optimal for uniform
measuring meteorological parameters; εZS is the fixed (set) error value of
the UAV altitude; Tc and Td are the time constants corresponding to the
smoothness of climb or descent during the final stage of the flight.

The fixed values of the parameters vZS, εZS, Tc and Td are pre-set by
the operator. In this way, controlling the speed setpoint vZ based on the
expression (4) allows UAV performing climbing and descending at a given
constant speed in the main measurement stage as well as smooth approach to
a fixed altitude value in the final stage of the climb and smooth landing in the
final stage of the descent. Herewith, a smooth climb and descent at the final
stages of the flight will be carried out according to the reference model of a
first-order aperiodic dynamic process, which is described by Equation (5)

Tc/d
dzR
dt

+ zR = z, (5)

where dzR
dt = vZ.

Since the first control channel of the presented automatic control system
(Figure 4) is the main one and the most important, therefore, next we will con-
sider in detail the designing procedures of the climb speed fuzzy controller
FCVZ (vZ coordinate controller).

In this case, for all four fuzzy controllers, it is advisable to choose
a Takagi-Sugeno FIE that allows synthesizing highly efficient and fairly
easy-to-implement control devices [62].
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For the climb speed controller, the input variables are the signals of the
climb speed error εVZ, its derivative dεVZ

dt and integral
∫
εVZdt. The signal

uVZC is the output variable. In turn, the fuzzy inference engine of the Takagi-
Sugeno type consists of the successive stages of fuzzification, aggregation,
activation, and defuzzification [62]. The stages of fuzzification and aggre-
gation are the same as for the FIE of Mamdani type [62]. At the stage of
fuzzification, the instantaneous numerical values of the input variables are
mapped to the corresponding fuzzy term sets with the calculation of the mem-
bership degree values. In this case, for the first variable εVZ, it is advisable to
choose five linguistic terms (LT) with triangular-type membership functions:
BN – big negative; SN – small negative; Z – zero; SP – small positive; BP –
big positive. As for the second and third variables dεVZ

dt and
∫
εVZdt, it is

advisable to choose three triangular LTs for each: N – negative; Z – zero;
P – positive. To ensure the versatility and the possibility of using this fuzzy
controller in various UAV’s control systems, the input variables are given in
relative units from their maximum values and, accordingly, have operating
ranges from −1 to 1.

The appearance of the linguistic terms for the controller’s input variables
with the initial parameters is shown in Figure 5.

As can be seen in Figure 5, linguistic terms are evenly distributed
across their operating ranges. Therefore, to fine-tune the fuzzy controller, the

Figure 5 Linguistic terms with the set parameters for the controller’s input variables.
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parameters of these terms must be determined using a further bio-inspired
optimization procedure.

In turn, the cutoff levels for the antecedents of the rules are determined
using the “min” operation at the aggregation stage. As the consequents of
rules in the Takagi-Sugeno FIE, the membership functions of the impulse
type are used, which are sums of weighted instantaneous values of all input
variables [62]. In this case, the total number of the rule base (RB) rules of
the controller s is determined by the number of all possible combinations of
input signals LTs and is equal to 45(s = 5 · 3 · 3 = 45). Each r-th rule of the
given controller’s RB (r = 1, 2, . . . , 45) is represented by the expression (6)

IF “εVZ = LT1” AND “
dεVZ

dt
= LT2” AND “

∫
εVZdt = LT3”

THEN “uVZC = k1r(εVZ) + k2r

(
dεVZ

dt

)
+ k3r

(∫
εVZdt

)
,

(6)

where LT1, LT2, and LT3 are certain linguistic terms of the correspond-
ing input variables; k1r, k2r, k3r are the weight coefficients of the RB
consequents; r is the rule number.

At the stage of activation for each of the RB rules, a clear value of the
output variable uVZCr is determined [42]. Thus, a point αruVZCr is assigned
to each r-th rule, where αr is the cutoff level for this rule.

Therefore, the fragment of the formed rule base of the climb speed fuzzy
controller should be presented in the form of Table 1.

Table 1 Fragment of the rule base of the climb speed fuzzy controller

Linguistic Terms of Input Variable Consequents Weights of Rules

Rule Number εVZ
dεVZ
dt

∫
εVZdt k1r k2r k3r

1 BN N N k11 k21 k31

5 BN Z Z k15 k25 k35

11 SN N Z k111 k211 k311

18 SN P P k118 k218 k318

23 Z Z Z k123 k223 k323

27 Z P P k127 k227 k327

30 SP N P k130 k230 k330

36 SP P P k136 k236 k336

41 BP Z Z k141 k241 k341

45 BP P P k145 k245 k345
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To find the optimal values of the weight coefficients k1r, k2r, and k3r for
each r-th rule it is also advisable to implement the bio-inspired optimization
procedure.

The defuzzification stage of the Takagi-Sugeno FIE includes a tran-
sition for each linguistic variable from a discrete set of clear values
{uVZC1, . . . , uVZCr, . . . , uVZCs} to a single clear value according to the
discrete method of the center of gravity [62]. In turn, this value is calculated
based on the expression (7)

uVZC =

∑s
r=1 αruVZCr∑s

r=1 αr
, (7)

where s is the total number of RB rules.
The remaining three auxiliary fuzzy controllers (FCX, FCY, and FCφ)

of the UAV’ control system are developed in the same way as the presented
climb speed controller.

Before applying all the considered fuzzy controllers, it is advisable to use
bio-inspired multi-agent optimization to find their optimal parameters [35].

To study the effectiveness of the proposed intelligent IoT-based control
system, the next section presents the optimization and simulation procedures
of the UAV’s flight processes.

4 Bio-inspired Multi-agent Optimization and Simulation of
the UAV’s Intelligent Control System

In this section, to study the effectiveness of the developed intelligent control
system, optimization procedures for the fuzzy climb speed controller, as well
as simulation experiments of UAV’s flights in various modes are carried out.
In turn, the optimization procedures for finding main controller’s parameters
are conducted using the bio-inspired multi-agent method of fuzzy systems’
parametric optimization based on hybrid improved grey wolf algorithm that
is designed in paper [35]. This approach enables the efficient optimization
of diverse parameters within fuzzy control systems, leading to the identi-
fication of optimal solutions for the given problem. Notably, it exhibits a
superior convergence rate when compared to techniques utilizing both basic
and enhanced grey wolf algorithms. This method leverages group hunting
strategies and dimension learning-based hunting, along with a local search
tactic based on the extended Kalman filter algorithm [35]. As a result, it
requires fewer computational resources and enhances the overall convergence
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rate towards optimal solutions, especially in the optimization of complex
fuzzy systems.

The grey wolf optimization algorithm is a newly devised bioinspired
multi-agent approach that emulates the collective behavior of wolves as
they navigate through space during hunting [53]. In the GWO method, the
models of wolves moving and interacting in a pack while in pursuit of
prey are mirrored by the agents within a multi-agent system. These agents
traverse a multidimensional search space, engaging in information exchange
to ultimately locate the optimal solution for the given problem. Furthermore,
a prominent characteristic of the GWO algorithm is its emulation of a rigid
social hierarchy among the grey wolves within the pack [53]. This hierarchy
consists of a specific number of wolves, each of which occupies one of the
four hierarchical levels. The first three levels of the hierarchy are occupied by
only one wolf each, while all the remaining wolves in the pack are situated
at the fourth level. The leader of the pack, referred to as the alpha wolf,
holds the highest position at the first level of the hierarchy. Beta and delta
wolves, on the other hand, are respectively positioned at the second and third
levels in the pack’s hierarchy. All other wolves in the flock, located at the
lowest fourth level of the hierarchy, are designated as omega wolves [53].
During the optimization process, the basic GWO algorithm replicates the
wolves’ collective hunting strategy, which relies on three primary behavioral
mechanisms: encircling prey, hunting, and attacking [53].

The improved GWO technique introduces the dimension learning-based
hunting (DLH) strategy alongside the group hunting approach of the basic
GWO algorithm. This addition serves to augment population diversity and
prevent premature convergence to suboptimal solutions [63]. The dimension
learning-based hunting is an individualized hunting strategy conducted inde-
pendently by each omega wolf in the pack, drawing from the experiences
of its immediate neighbors as well as other randomly selected wolves of the
omega type, rather than solely relying on the top three performers (alpha,
beta, and delta). The DLH strategy operates through three core mechanisms:
neighbors detection, learning, and updating [63].

To enhance the search process for the alpha, beta, and delta wolves, the
hybrid improved grey wolf algorithm incorporates an additional local search
strategy tailored for these top three performers in the pack [35]. This inclusion
aims to augment the overall convergence rate towards optimal solutions.
During each iteration of the algorithm, while the positions of all omega
wolves are updated based on the group hunting and DLH strategies, the
positions of the alpha, beta, and delta wolves undergo refinement using the
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extended Kalman filter algorithm [35]. This involves conducting a parallel
local search from the positions of the three most proficient agents to pinpoint
the local minima within their respective areas. In subsequent iterations, if any
omega wolf advances to become a new beta or delta, it will then undertake
a parallel local search from its updated position. Consequently, the former
beta or delta wolf reverts to its original status as a regular omega wolf and
engages in the search process utilizing the group hunting and DLH strategies
like the other omegas. In the event that a new alpha wolf emerges within
the pack, a leadership transition occurs. Following this mechanism, the wolf
with the most favorable position within the flock assumes the role of the
new alpha, while the previous alpha departs from the flock and proceeds to
conduct a separate local search, no longer engaging with the pack. In this
manner, the hybridization of the improved method with the local search
technique is implemented to achieve more effective optimization. The main
stages (initialization and search procedures) of this bio-inspired multi-agent
method are presented in detail in [35].

In this work, when optimizing a fuzzy climb speed controller, the vector
of optimized parameters X consisted of 135 weighting coefficients of the RB
rule consequents (in 45 rules), 33 parameters (vertices) of triangular linguistic
terms (for all 11 LTs shown in Figure 5), as well as 3 normalizing coefficients
used to preliminary converting the absolute values of the controller input
variables (εVZ, dεVZ

dt ,
∫
εVZdt) into relative units (from −1 to 1). Thus, the

total number of optimized parameters was 171.
The optimization of the given parameters were carried out on the basis of

the mathematical model of the quadrotor UAV [64]. This model consists of a
system of equations (8)

ẍ = ((F1 + F2 + F3 + F4)(cosφ sin θ cosψ + sinφ sinψ)

− kx1(ẋ)
2 − kx2Fx)/m;

ÿ = ((F1 + F2 + F3 + F4)(sinφ sin θ cosψ + cosφ sinψ)

− ky1(ẏ)
2 − ky2Fy)/m;

z̈ = ((F1 + F2 + F3 + F4) cos θ cosψ − Fg − kz1v
2
Z − kz2Fz)/m;

ψ̈ = l(−F1 + F2 + F3 − F4 − kψ1(ψ̇)
2 − kψ2Fψ)/Iψ;

θ̈ = l(−F1 − F2 + F3 + F4 − kθ1(θ̇)
2 − kθ2Fθ)/Iθ;

φ̈ = Cφ(F1 − F2 + F3 − F4 − kφ1(φ̇)
2 − kφ2Fφ)/Iφ,

(8)
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where m is the UAV mass; Fx, Fy, Fz , Fψ, Fθ, and Fφ are the corresponding
values of disturbing effects of wind; Fg is the gravity force; Iψ, Iθ, and Iφ are
the UAV’s moments of inertia about the longitudinal, transverse and vertical
axes; l is the distance from the rotor to the center of mass; Cφ is the yaw
moment coefficient; kx1, kx2, ky1, ky2, kz1, kz2, kψ1, kψ2, kθ1, kθ2, kφ1, and
kφ2 are the UAV’s model coefficients.

Since the time constants of the model of the UAV drives are significantly
less than the time constants of the model of the UAV itself, then the dynamics
of the rotor drives can be neglected. Also, as an assumption, we accept a
directly proportional relationship between the rotors’ control signals u1, u2,
u3, u4 and the corresponding lifting force values F1, F2, F3, F4.

In turn, 30 agents in the population were used at the implementation of the
hybrid bio-inspired method based on algorithms of the improved grey wolf
optimization and extended Kalman filter. As for the objective function J for
the UAV’s climb speed control the generalized integral quadratic deviation
between the output of the reference model vZD(t) and the real UAV climb
speed vZR(t,X) was selected:

J(t,X) =
1

tmax

∫ tmax

0
[(EVZ)

2 + kJ1(ĖVZ)
2 + kJ2(ËVZ)

2]dt, (9)

where tmax is the total transient time of the fuzzy control system; kJ1, kJ2
are the objective function’s weighting coefficients; EVZ is the deviation of
vZR(t,X) from the vZD(t), EVZ = vZD(t)−vZR(t,X). The reference model,
in this case, is presented by the Equation (10)

TRM
dvZD
dt

+ vZD = vZS, (10)

where TRM is the reference model’s time constant; vZS is the set value of the
UAV climb speed.

The maximum number of iterations Nmax = 100 was chosen as the
criterion for the completion of the optimization. The parametric optimization
of the vector X for the climb speed fuzzy controller was carried out 5 times
with the subsequent selection of the best results. When calculating the values
of the objective function, at each iteration, the simulation of the UAV control
system’s transients was carried out in different operating modes (take-off,
climbing and descending at a given speed, smooth approach to a fixed altitude
value, and smooth landing) to effectively optimize all parameters of the
fuzzy controller. The simulation experiments were conducted at the following
UAV’s main parameters: UAV’s total mass with measuring equipment was 2.3
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Figure 6 Convergence curve for the best case during the parametric optimization process of
the climb speed fuzzy controller.

kg, distance from the rotor to center of mass was 0.209 m, total maximum lift
force of 4 rotors was 40 N.

The Figure 6 shows the changing curve of the objective function J for
the best case implementing the bio-inspired multi-agent method (based on
the hybridization of algorithms of the improved grey wolf optimization and
extended Kalman filter) during the parametric optimization process of the
climb speed fuzzy controller.

As can be seen from Figure 6, the smallest value of the objective func-
tion Jmin = 0.312 was reached at the 47th iteration (NJ min) in the best
optimization case. In turn, this value of the objective function corresponds
to the following found controller’s parameters. The normalizing coefficients
optimal values are: K1 = 0.195; K2 = 0.101; K3 = 0.542. The appearance
of the linguistic terms with the optimized parameters is presented in Figure 7.

The fragment of the rule base of the climb speed fuzzy controller with the
optimal values of the weight coefficients is presented in Table 2.

To study the effectiveness of the designed fuzzy controller it was com-
pared with the optimally tuned conventional PID controller of the UAV
climb speed. In turn, the PID controller coefficients values are: kP = 3.595;
kD = 0.513; kI = 9.841. Moreover, the simulation experiments were con-
ducted for the following initial parameters: the set value of the climb speed at
the mode of a uniform climb vZS = 5 m/s; the fixed error value of the UAV
altitude when approaching the set altitude value εZS = 2.5 m; the fixed error
value of the UAV altitude when landing εZS = 5 m; the time constants of
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Figure 7 Linguistic terms with the optimized parameters for the controller’s input variables.

Table 2 Fragment of the fuzzy controller’s RB with the optimal weight coefficients
Linguistic Terms of Input Variable Consequents Weights of Rules

Rule Number εVZ
dεVZ
dt

∫
εVZdt k1r k2r k3r

1 BN N N 9.118 0.321 3.189
5 BN Z Z 8.76 0.318 3.065
11 SN N Z 8.146 0.206 3.201
18 SN P P 6.312 0.166 3.467
23 Z Z Z 5.131 0.112 3.578
27 Z P P 6.227 0.189 3.545
30 SP N P 7.244 0.174 3.168
36 SP P P 9.176 0.249 3.092
41 BP Z Z 9.853 0.297 2.943
45 BP P P 10.257 0.334 2.528

the flight altitude controller that correspond to the smoothness of climb and
landing during the final stage of the flight Tc = 0.5 s, Td = 1 s.

Therefore, Figure 8 shows transients graphs of the UAV’s climb speed
automatic control during takeoff and further uniform climb.

In this case (Figure 8), a step control signal of 5 m/s of a set climb speed at
the initial time was supplied to the system input. Then, at a time moment 5 s,
the system was affected by a stepwise disturbance in speed with an amplitude
of 40% from the set speed value (2 m) and a duration of 3 seconds.

Moreover, Figures 9 and 10 show transients graphs of controlling the
speed of climb and descent during a smooth approach to a given altitude
value and during a smooth landing, respectively.
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Figure 8 Transients graphs during the UAV’s takeoff and uniform climb: 1 – designed fuzzy
controller; 2 – conventional PID controller; 3 – disturbances in climb speed.

Figure 9 Transients graphs during the UAV’s smooth approach to a given altitude value: 1 –
designed fuzzy controller; 2 – conventional PID controller; 3 – desired speed value.

As can be seen from Figures 9 and 10, the developed intelligent system
allows smoothly reducing the speed of altitude change to 0 m/s during a
smooth approach to a given altitude value and during a smooth landing.

Based on the presented graphs of transients (Figure 8), a comparative
analysis of the main quality indicators of automatic climb speed control
processes was carried out, the results of which are shown in Table 3.

As can be seen from Figures 8–10, and Table 3, the proposed UAV’s intel-
ligent control system based on the developed and optimized fuzzy controller
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Figure 10 Transients graphs during the UAV’s smooth landing: 1 – designed fuzzy con-
troller; 2 – conventional PID controller; 3 – desired speed value.

Table 3 Comparative analysis of the quality indicators for automatic control processes of
climb speed during the UAV’s takeoff and further uniform climb

Quality Indicators Values
Main Quality Indicators Optimized Fuzzy Controller Conventional PID Controller

System’s responding to a step control signal
Transient time, s 0.74 2.67
Overshoot, % 0 37,9
Oscillatoryness 0 2

System’s responding to a step disturbance
Transient time, s 1.76 2.13
Overshoot, % 2.43 12.28
Oscillatoryness 1 2

has significantly higher quality indicators of control than similar system
with the conventional PID controller. So, when responding to a step control
signal and disturbance this system has much shorter transient time (higher
performance) and less values of overshoot and oscillatoryness. In particular,
when responding to a step control signal, its transient time is 3.6 times less
than that of a system based on PID controller. Also, when exposed to a
stepwise disturbance, the proposed system has an overshoot value 5 times
less with simultaneously lower values of control time and oscillation.

Moreover, with a smooth decrease in speed in the final stages of the flight,
the control system with an optimized fuzzy controller practically repeats the
trajectory of a given speed change. While the system with the conventional
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PID controller has significant oscillations, which in a certain way deteriorates
quality indicators. This is confirmed in both experiments during a smooth
approach to a given altitude value (Figure 9) and during a smooth landing
(Figure 10).

As for the remaining three auxiliary fuzzy controllers (FCX, FCY, and
FCφ) of the UAV’ control system, they can be optimized in the same way as
the presented climb speed controller.

In general, the conducted simulation experiments showed that the pro-
posed intelligent system based on integration of IoT, fuzzy logic and
bio-inspired multi-agent computing has sufficiently high control quality indi-
cators, which will significantly improve the efficiency of the UAV’s flight and
meteorological measurements processes as well as the overall productivity
of meteorological stations. Also, the proposed approach for the system’s
designing is universal and can be quite easily used for different types of UAVs
flying in various modes when carrying out different types of measurements.

5 Conclusions

The development and effectiveness study of the intelligent automatic con-
trol system of the UAV for meteorological measurements based on IoT
and mobile technologies is presented in this paper. The proposed by the
authors control system makes it possible to attain sufficiently high quality
indicators of the UAV’s flight control during the meteorological measure-
ments processes, which significantly improve the overall efficiency of the
meteorological stations. In turn, the presented intelligent control system is
created based on the integration of the following principles: (a) hierarchical
two-level control and data acquisition based on IoT and mobile technologies,
(b) simple and reliable fuzzy logic control with high performance, as well
as (c) efficient optimization of fuzzy control devices based on bio-inspired
multi-agent computing.

To evaluate the effectiveness of the proposed intelligent system, the
development and bioinspired optimization of the climb speed fuzzy controller
are conducted, as well as further simulation experiments for automatic control
of the UAV flight processes in various modes are carried out in this study.
The analysis of the obtained results of computer simulation shows that the
designed system due to the use of fuzzy control has a higher efficiency and
quality indicators (transient time, overshoot and oscillatoryness) compared to
existing analogue at implementing in various flight modes (uniform climb,
smooth approach to a given altitude value and smooth landing) when taking
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meteorological measurements. Moreover, the high accuracy of fuzzy control
is achieved through the use of the advanced bio-inspired multi-agent method
of parametric optimization based on hybrid improved grey wolf algorithm.
In particular, during the UAV’s takeoff and uniform climb, at the responding
to a step control signal the transient time and overshoot values were reduced
by 3.6 times and 37,9%, respectively, compared to the similar system with
conventional PID controller. As for responding to a step disturbance, the
system’s transient time and overshoot values were reduced by 17.4% and
9,85%, respectively. In addition, for the flight modes of a smooth decrease
in speed in the final stages of flight (completion of climb and landing), the
control system with an optimized fuzzy controller repeated the trajectory
of a desired speed change with high accuracy and without any oscillations.
Finally, the developed fuzzy controller has only 45 rules, which gives the
opportunity to provide enough simple software and hardware implementation
as well as easy customization and adaptability.

Thus, all the research results presented in this paper fully confirm the high
efficiency of the proposed intelligent control system based on IoT and mobile
technologies, as well as the expediency of its application in various integrated
meteorological stations using UAVs. In further research, is planned to test the
proposed intelligent system in real UAV-based meteorological stations and
compare the obtained results with the results of simulation experiments.
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