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Abstract: The importance of gene expression data processing in solving the classification task is
determined by its ability to discern intricate patterns and relationships within genetic information,
enabling the precise categorization and understanding of various gene expression profiles and their
consequential impacts on biological processes and traits. In this study, we investigated various archi-
tectures and types of recurrent neural networks focusing on gene expression data. The effectiveness
of the appropriate model was evaluated using various classification quality criteria based on type
1 and type 2 errors. Moreover, we calculated the integrated F1-score index using the Harrington
desirability method, the value of which allowed us to improve the objectivity of the decision making
when model effectiveness was evaluated. The final decision regarding model effectiveness was made
based on a comprehensive classification quality criterion, which was calculated as the weighted
sum of classification accuracy, integrated F1-score index, and loss function values. The simulation
results show higher appeal of a single-layer GRU recurrent network with 75 neurons in the recurrent
layer. We also compared convolutional and recurrent neural networks on gene expression data
classification. Although convolutional neural networks showcase benefits in terms of loss function
value and training time, a comparative analysis revealed that in terms of classification accuracy
calculated on the test data subset, the GRU neural network model is slightly better than the CNN
and LSTM models. The classification accuracy when using the GRU network was 97.2%; in other
cases, it was 97.1%. In the first case, 954 out of 981 objects were correctly identified. In other cases,
952 objects were correctly identified.

Keywords: gene expression profiles; recurrent neural network; deep learning; classification quality
criteria; grid search algorithm; cancer disease

1. Introduction

The application of deep learning methods to processing gene expression data in or-
der to tackle classification tasks has taken precedence due to several compelling reasons.
Primarily, the complexity and high dimensionality of gene expression data necessitate so-
phisticated computational models, which deep learning algorithms aptly provide, offering
a robust mechanism to decipher intricate patterns within the data. The multi-layered archi-
tectures of deep learning models, especially convolutional neural networks (CNNs) and
recurrent neural networks (RNNs), have proven highly proficient in capturing non-linear
relationships in gene expression, which is crucial for accurate classification [1]. Further,
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deep learning models can autonomously learn feature representations from raw data, elimi-
nating the need for manual feature extraction, thereby reducing potential biases introduced
during this process. Additionally, the models, when adequately trained, demonstrate
an impressive ability to minimize error and optimize classification tasks, which is vital
to ensuring reliable predictive performance. The applicability of deep learning models,
such as autoencoders and variational autoencoders, also facilitates effective dimensionality
reduction in gene expression data, aiding in mitigating the curse of dimensionality [2].
Moreover, in an era where precision medicine is pivotal, the application of deep learning
models to classifying gene expression data is paramount to identifying specific disease
subtypes and enabling targeted therapeutic approaches. The scalability of deep learning
models also affords them the flexibility to handle large genomic datasets, which is often
a requisite in bioinformatics research. Furthermore, the adaptive nature of deep learning
models allows them to evolve with increasing data and complexity, ensuring that they
remain relevant and applicable in the dynamically progressing field of genomics. Lastly, the
amalgamation of deep learning with existing biological knowledge can potentially unearth
novel insights and drive advancements in understanding gene expression mechanisms and
their implications in various biological phenomena and diseases. These facts indicate the
actuality of the research in this subject area.

Gene expression data processing in molecular biology uses both experimental and
computational methods to analyze gene activity. The widely used qRT-PCR method
quantifies specific gene expression levels and is excellent for validating high-throughput
results [3]. Microarrays, which analyze thousands of genes simultaneously, have long been
standard but are gradually being surpassed by RNA sequencing (RNA-Seq) due to its
higher resolution and capability to detect novel transcripts. Drop-seq, a newer method,
combines RNA-seq with microfluidics to study individual-cell gene expression [4]. After
experimental data collection, bioinformatics tools are essential for tasks like normalization
and differential expression analysis. DESeq2 and edgeR are examples of popular software
for such tasks.

CNNs have emerged as a pivotal tool for classifying gene expression data, thanks to
their autonomous feature-learning capability, which curtails the need for manual interven-
tion in high-dimensional genomic data extraction [5–7]. By recognizing patterns effectively,
they capture both local and global spatial hierarchies of gene expression profiles, a key
aspect in identifying complex biological states. The inherent mechanism of dimensionality
reduction through pooling layers in CNNs substantially alleviates computational chal-
lenges, proving particularly instrumental when dealing with voluminous gene expression
datasets. Moreover, CNNs maintain and interpret spatial relationships within the data,
which is essential to understanding the spatial configuration of genomic sequences. Impor-
tantly, CNNs facilitate transfer learning, enabling the adaptation of pre-trained models to
specific gene expression datasets, a vital attribute in scenarios with limited labeled data.
They exhibit commendable robustness against data noise, ensuring predictive accuracy
despite potential experimental variations in gene expression data. CNNs, while complex,
can be rendered interpretable using specific visualization techniques, revealing insightful
features and enhancing model transparency. Ultimately, they recognize features at varied
scales and ensure effective generalization through strategic model design, adeptly apply-
ing learned patterns to novel, unseen gene expression data, thereby holding substantial
promise for practical applications in both biomedical research and diagnostics.

However, it is important to highlight that a significant drawback of CNNs, impeding
their efficient utilization, is the substantial set of hyperparameters, the optimal values
that define the network’s architecture. Typically, values for these hyperparameters are
determined using either a grid search algorithm or the Bayesian optimization method [8,9].
Nevertheless, this process demands notable expenditure of time and computational re-
sources. Recurrent neural networks (RNNs) have specific advantages over convolutional
neural networks (CNNs) when it comes to processing gene expression data, especially con-
cerning sequence prediction and temporal dynamics understanding [10]. Firstly, RNNs are
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inherently adept at handling sequential data, which is crucial to analyzing gene expression
time series where temporal dependencies exist. Secondly, they are capable of maintaining
memory from previous inputs in their internal state, enabling them to capture dynamic
temporal behaviors in gene expression profiles, unlike CNNs, which typically treat input
features as independent. Thirdly, the gated units in advanced RNNs, like LSTM and GRU,
can selectively remember or forget information, which is essential for learning long-term
dependencies observed in certain biological processes. Fourthly, RNNs can model sequen-
tial data of varied lengths without the necessity to fix the input size, providing flexibility in
dealing with gene expression profiles from varied experimental setups. Fifthly, they natu-
rally support bi-directional input processing, which can be beneficial for exploring gene
expression profiles that may have bi-directional influences. Lastly, RNNs may facilitate
more intuitive insights into gene expression pathways and cascades due to their sequential
processing nature, potentially offering more biologically relevant interpretations compared
with the hierarchical feature learning in CNNs. However, it is noteworthy that RNNs also
come with challenges, such as susceptibility to vanishing and exploding gradient problems
in training, which need careful consideration during model development and application
in the bioinformatics domain.

In this study, we extend our previous research on the application of deep learning
methods for gene expression data processing, aiming to develop and enhance cancer disease
diagnosis systems [11–13]. The main contributions of the current research are as follows:

• Various architectures and types of recurrent neural networks (RNNs), namely, LSTM
and GRU, with primary focus on their capacity to process gene expression data
effectively, are investigated.

• We introduce an algorithm that optimizes the architecture and hyperparameter values
of RNNs, considering both classification accuracy and F1-score, thereby enabling a
thorough assessment of sample distribution quality across classes.

• We propose an integrated F1-score index calculated using the Harrington desirabil-
ity method and a comprehensive classification quality criterion, formulated as the
weighted sum of multiple partial quality criteria, like classification accuracy, inte-
grated F1-score index, and loss function values, enhancing objectivity and depth in
evaluating model effectiveness.

• We perform a comparison between convolutional neural networks (CNNs) and vari-
ous RNN architectures, with an evaluation of their effectiveness based on the calcu-
lation of classification accuracy, integrated F1-score index, loss function values, and
training times.

2. Related Works

Currently, many studies are devoted to solving the problem of gene expression pro-
cessing using deep learning methods. Thus, the paper [14] explores the application of
deep learning methods to the intricate task of understanding gene expression processes,
which traditionally leans on high-throughput sequencing technologies to classify and
identify transcription factors accurately. Considering the shortcomings of both traditional
technologies and existing bioinformatic models, which tend to become bogged down by
complex analysis function modules and burgeoning parameter counts, the authors pro-
pose a novel approach, DeepCAC, utilizing deep convolutional neural networks and a
multi-head self-attention mechanism to adeptly capture local and long-distance hidden
features in DNA transcription factor sequences while judiciously curtailing the number
of parameters. However, it should be noted that while DeepCAC signifies a promising
advance, demonstrating augmented performance and parameter efficiency, its limitations—
particularly its unverified reliability across a range of biological contexts and potential
susceptibility to sparse datasets—necessitate exhaustive validation in broader applications
to substantiate its efficacy in deep learning applications to gene expression processing. The
exploration [15] focuses on employing deep learning methods to decipher the complex
genetic underpinnings of late-onset Alzheimer’s disease (LOAD), the predominant multi-
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factorial neurodegenerative condition afflicting the elderly, utilizing Japanese genome-wide
association study (GWAS) data to identify two disparate patient groups, each characterized
by distinct genetic markers related to major risk and immune-related genes or kidney
disorder-associated genes, hence suggesting a potential interplay between impaired kidney
function and LOAD pathogenesis. A predictive model for LOAD subtypes was constructed
using a deep neural network, yielding accuracy values of 0.694 and 0.687 in the discovery
and validation cohorts, respectively, presenting a notable advancement in the nuanced
categorization of LOAD subtypes. However, while offering new insights into LOAD
pathogenic mechanisms, it is crucial to recognize the model’s limitations, with the model
necessitating further optimization and rigorous validation across larger and more diverse
population samples to confirm these findings’ broader applicability and robustness.

Many recent studies have explored the potential of convolutional neural networks
(CNNs) for classifying extensive datasets [8,9,16,17]. For instance, the research study in [8]
transformed gene expression datasets from 11 cancer types into 2D images using spectral
clustering and achieved a classification accuracy ranging between 97.7% and 98.4% using
CNNs. Another work, [16], utilized both support vector machines and CNNs to detect early
breast cancer signs, outperforming existing classification methods for benign and malignant
mass regions. This approach could aid radiologists in improving their diagnostic accuracy.
The technique of a dense skip connection encoding–decoding structure based on CNNs
is discussed in [9], where an image preprocessing method amplified the contrast between
thymoma and surrounding tissues, improving the classification accuracy by 4% compared
with other methods. The study in [17] introduced a Mixed Skin Lesion Picture Generate
method using Mask R-CNN to address data imbalance issues, achieving 90.61% accuracy
and 78.00% sensitivity on the ISIC dataset. Further works, [18,19], affirmed the efficiency of
CNNs in classifying objects with large attribute counts based on gene expression data.

The study [20] considers the application of deep learning methods to navigate the
challenging landscape of breast cancer subtyping, with its intrinsic heterogeneity and con-
sequent varied prognostic outcomes, by introducing moBRCA-net, an interpretable deep
learning-based classification framework that harnesses multi-omics datasets—specifically,
by integrating gene expression, DNA methylation, and microRNA expression data while
respecting the biological interrelationships among them. By employing a self-attention
module for each omics dataset to ascertain the relative importance of each feature and
subsequently transforming these features into new representations based on learned impor-
tance, moBRCA-net aims to adeptly predict breast cancer subtypes, demonstrating notably
enhanced performance and effective multi-omics integration in comparison with other
methods, as substantiated by experimental results. Despite the promising advancements
brought forth by moBRCA-net, the potential limitations of this approach, such as the need
for comprehensive validation across varied demographic cohorts and the adaptability
to accommodate evolving omics data types, warrant careful consideration and further
exploration to ensure its applicability and reliability in real-world clinical settings. In
[21], the authors proposed employing machine learning and deep learning methodologies,
specifically utilizing an autoencoder neural network and various statistical models, to
identify prognostic biomarkers predictive of time to development and survival stratifica-
tion in oral cancer (OC) by analyzing the gene expression profiles of 86 patients from the
GSE26549 dataset. The approaches used allowed for the extraction of 100 encoded features,
of which 70 were found to be significantly related to time to OC development, and further
analyses identified two survival risk groups and 21 top genes, demonstrating the overall
random forest classifier accuracy of 0.916 over the test set, thus potentially illuminating
transcriptional biomarkers pertinent to determining high-risk OC patients and offering
promising therapeutic targets. However, despite the insightful findings, the study bears
limitations, such as the restricted patient sample size and the need for thorough valida-
tion across diverse demographic cohorts and varied types of OC, ensuring the identified
biomarkers’ broader applicability and efficacy in prospective, retrospective, and real-world
clinical settings.
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In [22], the authors considered the application of deep learning methods, such as
convolutional neural network (CNN), deep neural network (DNN), and Long Short-Term
Memory (LSTM) recurrent neural network (RNN), to address the critical need for efficient
and rapid computational models for breast cancer prognosis, thereby proposing an ensem-
ble model for breast cancer survivability prediction (EBCSP) that harnesses multi-modal
data and stacks the outputs of various neural networks dedicated to distinct data modalities.
By employing a CNN for clinical modalities, a DNN for copy number variations (CNV),
and an LSTM-RNN for gene expression modalities and subsequently utilizing the indi-
vidual models’ outputs for binary classification based on survivability using the random
forest method, the EBCSP model successfully outperforms models reliant on a single data
modality for prediction, as well as existing benchmarks. Despite its promising results, it is
imperative to acknowledge inherent limitations, such as the necessity for comprehensive
validation across diverse demographic and clinical cohorts, as well as the evaluation of
model robustness and accuracy in real-world practical medical settings, to ascertain its
efficacy and applicability.

The studies [23–25] delve into the meticulous application of recurrent neural networks
(RNNs) for diverse approaches to understanding and classifying gene regulatory networks
(GRNs) and cancer detection from gene expression data. One approach [23] leverages a
dual-attention RNN to not only predict gene temporal dynamics with high accuracy across
various GRN architectures but also exploit the attention mechanism of RNNs, employ-
ing graph theory tools to hierarchically distinguish different architectures of the GRN,
though the robustness of this method against varied noise types and its applicability to
non-synthetic data present potential limitations. Another research study [24] introduces
a strategy for cancer classification using a JayaAnt lion optimization-based Deep RNN
(JayaALO-based DeepRNN), involving data normalization, transformation, feature dimen-
sion detection, and classification, and while achieving high classification accuracy, sensi-
tivity, and specificity, the method’s generalized applicability and performance consistency
across different types and stages of cancers are yet to be fully explored. In a similar vein,
the third study [25] proposes a Rider Chicken Optimization algorithm-dependent RNN
(RCO-RNN) classifier for cancer detection and classification, which, despite demonstrating
promising results across several datasets, still demands a thorough investigation regarding
its performance on varied genomic profiles and under possible computational constraints.

However, we would like to note that the application of deep learning methods to gene
expression data frequently encounters the notable challenge of optimizing hyperparame-
ters, such as learning rate, batch size, and network architecture, which is critical to model
performance but is often performed with computationally expensive and time-consuming
trial-and-error or grid search processes. Additionally, deep learning models can struggle
with the high dimensionality and often sparse nature of gene expression data, requiring
robust data preprocessing and feature selection to prevent overfitting and ensure gener-
alizable, biologically relevant predictions. For this reason, the study in this subject area
is relevant.

3. Experimental Dataset

The research simulation leveraged gene expression data from patients evaluated for
various cancer types, available through The Cancer Genome Atlas (TCGA) [26]. The data,
obtained from the Illumina platform [27] through RNA genomic sequencing, initially
included 3269 samples and 19,947 genes, with each sample pinpointing numerous relevant
genes defining its state, and Table 1 provides a detailed breakdown of the experimental
data characteristics, categorizing disease type, corresponding sample numbers, and counts
of non-cancerous patient samples.

The gene expression value of a sample, as outlined in Table 1, signifies its activity level,
indicative of the intensity of the associated protein synthesis process, and is proportionate
to the volume of similar genes. In compliance with the methodology detailed in [11,13],
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firstly, absolute gene counts were converted into a more conducive range (Count Per
Million—CPM) using the subsequent formula:

CPMij =
countij

∑m
j=1 countij

· 106 (1)

where countij denotes the number of the jth type of gene related to the ith sample and m
indicates the total number of unique gene types explored in the experiment.

Table 1. The classification of experimental gene expression data used in the modeling process.

No Type of Cancer Number of Samples

1 Adrenocortical carcinoma—ACC 79

2 Glioblastoma multiforme—GBM 169

3 Sarcoma—SARC 263

4 Lung squamous cell carcinoma—LUSC 502

5 Lung adenocarcinoma—LUAD 541

6 Stomach adenocarcinoma—STAD 415

7 Kidney renal clear cell carcinoma—KIRC 542

8 Brain lower-grade glioma—LGG 534

9 Normal 224

The application of this step notably diminished the range of variation in the absolute
values defining each gene’s expression (activity level). In the second step, data normaliza-
tion was performed by applying the function log2(CPM) to all values. Next, non-expressed
genes were omitted based on the condition log2(CPM) ≤ 0 across all analyzed samples,
decreasing the gene count by 682 and formatting the gene expression experimental data
matrix to E = (3269 × 19,265).

4. Criteria for Evaluating Sample Classification Quality

In the present study, object classification was carried out by leveraging metrics that
evaluate type 1 and type 2 errors [28]:

• Classification accuracy is the overall percentage of correctly identified samples, calcu-
lated as

ACC =
TP + TN

TP + FP + TN + FN
(2)

• F1-score is a metric that assesses the precision and recall of sample distribution across
the relevant classes, computed as

F1 =
2 · PR · RC
PR + RC

(3)

where precision (PR), the probability of correct sample identification for a class, is

PR =
TP

TP + FP
(4)

and recall (RC), the probability of correctly identifying true positive cases for a class, is

RC =
TP

TP + FN
(5)

In these formulas, TP (true positive) and TN (true negative) indicate the count of
objects correctly classified, while FP (false positive) and FN (false negative) represent
those classified incorrectly. It is crucial to highlight that for a multi-class issue, the
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accuracy gauges the overall sample distribution accuracy among classes, while the
F1-score appraises the precision of sample distribution within each class independently.

• Cross-entropy loss function (Loss)—computed during model validation to measure
the disparity between predicted and actual probability distributions, in a multi-class
classification task involving C classes:

L(y, ŷ) = − 1
N

N

∑
i=1

C

∑
j=1

yijlog(ŷij) (6)

where yij denotes a binary indicator of whether class j is the correct classification for
observation i, ŷij is the predicted probability of observation i being of class j, and N
represents the total number of observations.

Given the challenges of analyzing F1-score values corresponding to multiple classes to
select the optimal alternative from a hyperparameter list, an integrated F1-score value was
computed. This calculation utilized Harrington’s desirability method [29], a potent method
for addressing multicriterion issues. The implementation algorithm of this procedure
encompasses the following stages:

1. Initialization. Transform the F1-score values in a matrix format, with rows represent-
ing classes and columns representing the hyperparameter values under examination
in this phase.

2. Private desirability calculation. Identify the minimum and maximum values of the F1-
score during the relevant neural network model operation phase (using the respective
hyperparameter combination). Subsequently, transform the scale of F1-score values
into a linear scale of the dimensionless indicator Y, considering the boundary values
of the F1-score identified in the prior step (the value of parameter Y, according to the
desirability method, varies from Ymin = −2 to Ymax = 5):

Ymin = a + b · F1min

Ymax = a + b · F1max
(7)

Transform the F1-score values into Y values:

Y = a + b · F1 (8)

Compute private desirability for each F1-score value:

d = exp(− exp(−Y)) (9)

3. Integrated F1-score value calculation. For each column of the matrix obtained in step 2,
compute the integrated F1-score value as the geometric mean of all private desirability
functions:

F1j
int =

(
9

∏
i=1

dij

) 1
9

(10)

4. Results analysis: Generate a diagram illustrating the dependency of the integrated
F1-score values on the respective combination of hyperparameter values. Select the
optimal combination of hyperparameter values that correlates with the maximum
integrated F1-score.

5. Applying Recurrent Neural Network (RNN) for Gene Expression Data Classification

The recurrent neural network (RNN) represents a neural network architecture de-
signed to handle sequential data, including text, time series, and speech. The foundational
concept of an RNN involves its ability to maintain connections to prior states, thereby
enabling the model to preserve information about preceding sequence elements [10,30,31].
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In general, the RNN architecture is composed of several pivotal components that facilitate
the processing of sequential data and the uncovering of hidden dependencies in sequences,
ultimately aiming to enhance the precision of identifying objects, the attributes of which
are vectors of input data presented to the network:

• Input layer: The recurrent neural network (RNN) receives a sequence of input data,
which can be represented as a vector or a matrix.

• Recurrent layer: The recurrent layer, being a pivotal component of an RNN, processes
sequential data while retaining and updating a hidden state in each data processing
step. It is noteworthy that a distinctive feature of RNNs is that the hidden state in
step t encompasses information from both the preceding step t-1 and the current input
signal. The recurrent layer applies an appropriate activation function to transform the
combined input in each step.

• Output layer: After the input sequence is processed through the recurrent layer,
the final hidden state conveys the formulated information to the output layer to
produce the desired outcome. Depending on the task, the output layer can have
various structures.

• Feedback among neurons of hidden layers: Upon obtaining the output, losses are
computed by applying a loss function to compare the predicted output with the actual
result. The error is then backpropagated to update the weight coefficients of the
recurrent layer and optimize the model.

Generally, the mathematical model of an RNN can be depicted as follows:

h(t) = f h
act(wihx(t) + whh f (t− 1))

y(t) = f 0
act(wh0 f (t))

(11)

where x(t) is the vector of input data; y(t) is the vector of output data (classes); f h
act and f 0

act
are the activation functions for the hidden and output layers, respectively; wih, whh, and
wh0 are the weight coefficient matrices for the input layer to the first hidden layer, among
hidden layers, and the last hidden layer to the output layer, respectively; h(t− 1) and h(t)
are the output values of the neurons in the hidden layers in steps t− 1 and t, respectively.

The primary drawback of a simple recurrent neural network (RNN) is the presence of
the vanishing gradient problem, which complicates the processing of high-dimensional
gene expression profiles for uncovering hidden patterns. To address this issue, more
complex variants of RNNs have been developed, such as Long Short-Term Memory (LSTM)
and Gated Recurrent Unit (GRU) networks, which incorporate specialized mechanisms for
tackling the vanishing gradient problem and efficiently detecting hidden dependencies.
Consequently, within the scope of the current research, LSTM and GRU RNNs are explored.

It should be noted that compared with another type of neural network, likely a
convolutional neural network (CNN), an RNN has a shorter list of hyperparameters,
simplifying the formation of a list of optimal hyperparameters using grid search. The
primary hyperparameters that determine the performance efficiency of RNNs include the
following:

• The number of recurrent (hidden) layers.
• The number of neurons in the recurrent layers.
• Activation functions for the recurrent and output layers. Typically, as with the previous

type of network mentioned, the softmax activation function is used for the neurons
in the output layer. For the neurons in the recurrent layers, sigmoid, tanh, and relu
activation functions might be utilized.

Results from preliminary modeling indicated that when using both models of RNNs
(LSTM and GRU), the hyperbolic tangent (tanh) activation function is substantially more ef-
fective than the relu and sigmoid activation functions, based on sample classification criteria
that comprise the experimental database. Therefore, the modeling process envisaged opti-
mizing two RNN hyperparameters: the number of neurons in the recurrent layers and the
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number of recurrent layers. The procedure for forming the RNN optimal hyperparameter
vector was carried out according to an algorithm, the implementation of which involves
the following stages.

Stage I. Data formation and algorithm parameter adjustment.

1.1. Presenting the gene expression data as a matrix E = (eij)n×m, where n is the
number of rows or samples under investigation; m is the number of genes, the
expression values of which determine the state of the respective samples.

1.2. Forming the list of hyperparameters for optimization, their range, and step of
change during the algorithm operation: layers = 1, 3 (number of neural layers
in the recurrent layer of RNN); k = 30, . . . , 80, dk = 5 (range and step change of
the number of neurons in recurrent layers).

1.3. Dividing the set of gene expression data samples into two subsets in a 0.7/0.3 ratio,
where the first subset, Etrain, is used for model training and the second one, Etest,
for testing.

1.4. Further splitting training subset Etrain into two subsets in a 0.8/0.2 ratio, where
the first subset, E′train, is directly used for training and the second one, Evalid, for
model validation during training. Ensuring that the model does not overfit is
controlled by monitoring the convergence nature of classification accuracy and
the loss function values, calculated on training and validation subsets during
model training.

Stage II. Algorithm operation within the hyperparameter adjustment range.

2.1. Initializing the number of neural layers in the recurrent layer: levels = 1.
2.2. Initializing the starting value of the number of neurons in the recurrent layers:

k = 30.
2.3. Model training. At each training step, calculating the classification accuracy and

the loss function value on the data subsets for training and validation.
2.4. Testing the model on the test data subset. Calculating the samples’ classification

accuracy, F1-score for each class.
2.5. If k < kmax, increasing the number of neurons in the recurrent layers by 5

(k = k + 5), and escaping to step 2.3 of this procedure. Otherwise, calculating
the integrated F1-score value; analyzing the obtained results; and forming the
optimal decision regarding the number of neurons in the recurrent layers in this
stage.

2.6. If the number of recurrent layers is less than the maximum number
(layers < layersmax), increasing the number of layers by 1, and going to step 2.2
of this algorithm. Otherwise, proceeding to Stage III.

Stage III. Analysis of the obtained results and formulation of an optimal solution.

3.1. Comparative analysis of the solutions obtained in the previous algorithm opera-
tion stage. Forming the optimal decision regarding the hyperparameter vector
for the corresponding type of RNN.

5.1. Modeling of LSTM Recurrent Neural Network

In Figures 1–3, the simulation results to determine the optimal hyperparameters of the
LSTM recurrent neural network are depicted.

Single-layer, two-layer, and three-layer neural networks were investigated during the
simulation process. As the simulation results show, increasing the number of layers when
applying gene expression data is not advisable, since the network’s performance quality
decreased according to the used criteria, while its propensity for overfitting increased due
to enhanced complexity. To reduce the likelihood of network overfitting, 20% of neurons
were zeroed out after each layer.
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Figure 1. Results of modeling when applying a single-layer LSTM recurrent neural network. The
different colors in (c) correspond to different classes.

Figure 2. Results of modeling when applying a two-layer LSTM recurrent neural network. The
different colors in (c) correspond to different classes.

Analyzing the modeling results allows us to conclude that in all cases, the accuracy
of classifying samples comprising the test data subset varied within a quite narrow range:
from 95% to 97%. This indicates the high quality of the RNN’s performance in classify-
ing gene expression data. A more detailed analysis of the obtained diagrams indicates
higher efficiency of a two-layer LSTM recurrent neural network with 35 neurons in the
recurrent layers, according to all utilized quality criteria. This RNN model was used in
subsequent studies.
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Figure 3. Results of modeling when applying a three-layer LSTM recurrent neural network. The
different colors in (c) correspond to different classes.

5.2. Modeling of GRU Recurrent Neural Network

In Figures 4–6, the modeling results using a GRU recurrent neural network are de-
picted. The analysis of the obtained results also indicates the high effectiveness of this type
of RNN for classifying data based on gene expression. However, compared with the LSTM
network, a single-layer GRU neural network is more appealing both in terms of stability
and quality.

With 55 neurons in the recurrent layer, utilizing this type of network allows for the
achieving of classification accuracy of 96.9% for the samples of the test data subset, with
a loss function value of 0.138 and a relatively high density of variation in the F1-measure
values across individual classes of the test data subset (ranging from 0.922 to 1). The
integrated F1-measure value was 0.944 in this case.

Figure 4. Results of modeling when applying a single-layer GRU recurrent neural network. The
different colors in (c) correspond to different classes.
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Figure 5. Results of modeling when applying a two-layer GRU recurrent neural network. The
different colors in (c) correspond to different classes.

Figure 6. Results of modeling when applying a three-layer GRU recurrent neural network. The
different colors in (c) correspond to different classes.

5.3. Calculating the Comprehensive Quality Criterion for the Classification of Gene
Expression Data

The analysis of the simulation results, presented hereinbefore, indicates challenges to
determining the optimal architecture and hyperparameters of the neural network based on
the combination of classification quality criteria used during the simulation process. The
values of these criteria can be contradictory. Moreover, even a small difference in values can
somewhat complicate selecting a list of optimal neural network hyperparameters. In this
case, it is advisable to calculate a comprehensive quality criterion based on calculated indi-
vidual criteria, such as sample classification accuracy, loss function value, and integrated
F1-score value. Notably, higher accuracy and F1-score values and a lower loss function
value correspond to a higher quality level of the model, i.e., an optimal network type and
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list of its hyperparameters. The calculation of the comprehensive quality criterion was
performed using the weighted average method:

QCw =
n

∑
k=1

weightk ·QCk (12)

where weightk denotes the weight of the corresponding k-th quality criterion (QCk).
The algorithm for calculating the criterion (6) within the current research entails the

following steps:

1. Inverting the loss function value into a vector of values that increase with the model’s
attractiveness:

loss′k = max(loss)− lossk (13)

2. Scaling the values of all criteria within the range [0, 1]:

QCnorm
k =

QCk −min(QC)
max(QC)−min(QC)

(14)

3. Initializing the weight vector for the utilized criteria. When calculating the compre-
hensive quality criterion for classification, it was assumed that the weight of the loss
function value, calculated on the data for model validation of the neural network,
was half as much as the weights of accuracy and integrated F1-score, which were
calculated on the test data subset. Therefore, the weight vector for the criterion vector
(ACC; F1int, loss′) was initialized as follows: w = (0.4, 0.4, 0.2).

4. Calculating the value of the comprehensive criterion using Formula (12):

QCcompr
k = w[1] · ACCnorm

k + w[2] · F1norm
k + w[3] · lossnorm

k (15)

A higher value of this criterion corresponds to a better alternative.
The proposed methodology was tested using results obtained in the previous subsec-

tions during the simulation of LSTM and GRU recurrent neural networks with various sets
of hyperparameters. Figures 7 and 8 illustrate the distribution diagrams of the comprehen-
sive quality criterion value for the performance of LSTM and GRU recurrent neural net-
works when using varying numbers of neurons and different amounts of recurrent layers.

Figure 7. Distribution diagrams of the classification comprehensive quality criterion when using
LSTM recurrent neural network.
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Figure 8. Distribution diagrams of the classification comprehensive quality criterion when using
GRU recurrent neural network.

The analysis of the obtained simulation results allows us to conclude that in the
case of using the LSTM model, a two-layer RNN with 35 neurons in the recurrent layer
is optimal according to the comprehensive quality criterion. When applying the GRU
model, the results are not unambiguous. A single-layer RNN with 55 neurons is appealing
but not the best, according to the comprehensive quality criterion. A higher value of
the comprehensive criterion corresponds to a single-layer RNN with 75 neurons in the
recurrent layer. However, the maximum value of the criterion corresponds to a three-layer
GRU recurrent neural network with 60 neurons in the convolutional layer. It is essential
to consider the increased training time for the network. Therefore, considering the minor
difference in the values of the comprehensive quality criterion, a single-layer GRU RNN
with 75 neurons in the recurrent layer is identified as more appealing. The next step
involves comparing convolutional and recurrent neural networks with optimal sets of
hyperparameters.

6. Comparative Analysis of Convolutional and Recurrent Neural Networks with
Optimal Hyperparameters

The comparative analysis of the previously studied deep neural networks was per-
formed by applying them to identical gene expression data. In this case, as in previous
ones, the data were divided into three subsets: for network training, its validation during
the training process, and testing the obtained model. The hyperparameter values of the
convolutional neural network (CNN) were set considering our previous studies. In this
instance, we applied the single-layer CNN, where number of filters = 32, kernel size = 3,
Dense kernel = 64, maximal pooling = 3; the activation functions for convolutional layer,
dense layer, and output layer were sigmoid, selu, and softmax, respectively.

In Figures 9–11, diagrams illustrating changes in the accuracy of sample classification
and the loss function values during the training of the investigated neural networks are
depicted. The analysis of the obtained diagrams indicates the absence of network overfitting
in all cases, since the character of changes in the respective criterion values when applying
the training data subset and during model validation are consistent with each other. It
should be noted that the training time for the convolutional neural network was 39 s,
which was significantly less than that when using LSTM (185 s) and GRU (166 s) recurrent
neural networks.

In Figure 12, the diagrams of classification quality criteria based on gene expression
data are depicted when applying different types of deep neural networks.
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Figure 9. Diagrams of changes in accuracy values and the loss function, calculated on the training
subset and during model validation when applying the CNN model.

Figure 10. Diagrams of changes in accuracy values and the loss function, calculated on the training
subset and during model validation when applying the LSTN RNN model.

Figure 11. Diagrams of changes in accuracy values and the loss function, calculated on the training
subset and during model validation when applying the GRU RNN model.

Analyzing the obtained results allows us to conclude that in terms of classification
accuracy, calculated on the test data subset, the GRU neural network model is slightly better
than the CNN and LSTM models. The classification accuracy when using the GRU network
was 97.2%; in other cases, it was 97.1%. In the first case, 954 out of 981 objects were correctly
identified. In other cases, 952 were correctly identified. In terms of the loss function value
and training time, the convolutional neural network is more appealing. The distribution
pattern of F1-score values also indicates a small disparity in the sample identification
results when distributed into respective classes. The analysis of the comprehensive quality
criterion values confirms the conclusion regarding the greater appeal of the GRU recurrent
neural network based on a set of criteria. This fact affirms the adequacy of the proposed
method for evaluating the quality of the neural network according to a set of quality criteria,
enhancing the objectivity of forming the vector of optimal hyperparameters during the
model tuning process.
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Figure 12. The simulation results when applying the GRU RNN model.

A comparative analysis of simulation results revealed a preference for the GRU recur-
rent neural network over both the CNN and LSTM RNN in terms of classification quality
criteria for gene expression data processing. However, when evaluating based on loss
function values, CNN-based models were superior. While CNNs are widely appreciated
for their capacity to automatically learn spatial features from gene expression data, effec-
tively discern biologically relevant patterns, and handle high-dimensional datasets without
significant feature engineering, they are also known to consistently improve performance
as they encounter more data, underscoring their value in genomics. Nevertheless, effec-
tively utilizing CNNs requires identifying an optimal set of hyperparameters, including
the architecture itself, a process that can be both time-consuming and resource-intensive.

In this context, our proposed methodology, based on recurrent neural networks, offers
advantages in hyperparameter optimization compared with CNNs. Notably, the GRU
RNN demonstrated superior performance in gene expression data classification. The
introduced method for model effectiveness evaluation, which relies on a comprehensive
quality criterion, allows for the selection of the most suitable model by considering various
classification quality criteria and assigning appropriate significance weights.

However, the limitation of our methodology lies in the approach to determining
optimal hyperparameters. We employed a grid search algorithm in our research, which is
notably time-intensive. As a future enhancement, we aim to leverage the Bayes optimization
algorithm, streamlining the hyperparameters optimization process. This could also pave the
way for a comparative analysis of different deep learning model types for gene expression
data processing.

7. Conclusions

The manuscript presents research results regarding the application of a recurrent
neural network (RNN) for processing gene expression data. Two types of RNNs, LSTM and
GRU, were investigated. An algorithm for optimizing the architecture and hyperparameter
values of the RNN, which involves calculating both the accuracy of sample classification and
the evaluation of the F1-score, the value of which allows for the assessment of the quality of
sample distribution into respective classes, is proposed. An integral criterion of the F1-score
based on the desirability method by Harrington was calculated to enhance the objectivity
of decision making regarding model efficiency. Also proposed is a comprehensive data
classification quality criterion using the relevant type of deep learning network, calculated
as a weighted sum of partial quality criteria determined during the simulation process.
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The modeling of various RNN architectures was carried out, and as a result, optimal
hyperparameter values for each type of network were determined. The simulation results
enabled the conclusion regarding the higher appeal of the single-layer GRU recurrent
network with 75 neurons in the recurrent layer. A comparative analysis of convolutional
and recurrent neural networks with optimal hyperparameters was also performed. It is
shown that in terms of classification accuracy calculated on the test data subset, the GRU
neural network model is slightly better than the CNN and LSTM models. The classification
accuracy when using the GRU network was 97.2%, and in other cases, 97.1%. In the first
case, 954 out of 981 objects were correctly identified. In other cases, 952 were correctly
identified. Although the convolutional neural network is more attractive in terms of the
loss function value and training time, the GRU recurrent neural network is more appealing
based on a set of criteria.

The authors’ further research perspective involves investigating the Bayesian opti-
mization algorithm for optimizing the model’s hyperparameter values with a comparative
analysis of different types of models and methods for optimizing their parameters.
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