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ABSTRACT This manuscript explores the application of deep learning (DL) techniques for classifying gene
expression data. A key aspect of our research is the comparative analysis of various DL neural network
architectures, including Convolution Neural Networks (CNN), Long Short-Term Memory (LSTM) and
Gated Recurrent Unit (GRU) Recurrent Neural Networks (RNN), as well as hybrid models that combine
these networks. We applied the Bayesian optimization algorithm using 5-fold cross-validation for optimal
hyperparameter tuning, which is crucial for DL algorithm performance. Significantly, we have advanced
the methods for applying RNNs in processing gene expression data, particularly focusing on LSTM and
GRU types. Our study introduces also a novel hybrid quality criterion for data classification, calculated as a
weighted sum of partial quality criteria, incorporating an integrated F1-score derived through the Harrington
desirabilitymethod. Furthermore, we investigate hybridmodels that leverage variousDLmethods, enhancing
decision-making objectivity in sample identification. This model uses a step-by-step information processing
procedure, initially applying different DL models to gene expression data and subsequently processing
these through a CART-based classifier for final decision-making. Our experiments, performed on gene
expression data from patients with eight cancer types and one subset with normal samples (without cancer),
demonstrated that GRU-RNN-based models, particularly a two-layer GRU-RNN, achieved the highest
classification efficacy, with an accuracy of 97.8% on the test dataset. The performance of thismodel exceeded
that of other models, whose accuracy varied between 96.6% and 97.3%. Comparative analysis with other
studies in this field suggests that the proposed techniques demonstrate higher efficacy compared to similar
research regarding the application of DL models for cancer-type diagnosis.

INDEX TERMS Convolution neural network, LSTM recurrent neural network, GRU recurrent neural
network, gene expression data, classification, hybrid model, classification quality criteria, cancer disease.

I. INTRODUCTION
Modern bioinformatics is increasingly focused on processing
gene expression data to develop diagnostic systems for
complex diseases. The appeal of deep learning (DL) methods
for this task stems from their ability to handle the intricate
structure and vast volume of experimental data, which
often comprises thousands of objects and over ten thousand
attributes. DL algorithms stand out for their capacity to
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process intricate and unstructured data. These methods can
find patterns in hierarchically presented data and craft
functions that enable precise identification of the objects
being studied. Not only do models based on DL offer high
accuracy and performance, but they also excel at extracting
meaningful patterns directly from raw data. This ability
unveils hidden regularities and intricate data relationships that
traditional methods might miss.

Another notable feature of deep learning-based models
is scalability. They can be efficiently adapted to manage
vast data volumes and benefit from parallel or distributed
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computing architectures. This scalability speeds up both the
learning process and result generation. Specifically, for gene
expression data, applying DL methods correctly can enhance
the efficiency of diagnostic systems for complex diseases
such as cancer, Alzheimer’s disease, Parkinson’s disease, etc.
This is due to the superior accuracy in identifying subjects
and the parallel processing capability. This fact bolsters
increasing the object state determination’s objectivity.

In summary, the growing importance and potential benefits
of using DL for gene expression data highlight the signifi-
cance and timeliness of current research in this domain.

Currently, several DL methods exist that can be applied to
gene expression data processing, revealing hidden patterns
and facilitating predictions about the state of the corre-
sponding object [1]. Figure 1 presents a block chart of the
most prevalent DL methods tailored for gene expression data
processing and genomic sequence analysis, along with areas
of their potential applications.

FIGURE 1. Block chart of DL methods and their applications for gene
expression data and genomic sequence analysis.

Each DL method is suited for different tasks, with
the choice of method being influenced by the nature
of the experimental data, research objectives, and constraints.
The following factors determine the primary distinctions
between existing DL methods:

1. Network Architecture:
• Convolutional Neural Networks (CNNs) is adept at
handling both two-dimensional (e.g., images) and
one-dimensional data.

• Recurrent neural networks (RNNs) excel at pro-
cessing sequential data like text or time series.

• Variational autoencoders primarily generate new
samples from learned latent representations.

• Graph Convolutional Neural Networks (GCNN)
process data represented as graphs. This neces-
sitates prior gene network reconstruction, adding
complexity to data processing.

While each method offers unique advantages and
drawbacks, the combination (or hybridization) of these
DL models can potentially enhance gene expression
data processing.

2. Input Data Type and Size:
• CNNs typically need many input samples for
optimal accuracy. However, increasing training
epochs can lead to the risk of retraining.

• RNNs, in contrast to CNNs, can operate effectively
on smaller datasets.

• GNNs necessitate input data in graph format,
demanding further research into optimizing the
graph structure.

3. Application Tasks:
• Each of the above DL methods can be applied to
different tasks, such as classification, clustering,
generation sequences, reconstruction, etc.

• The choice of method is determined by the specific
task of gene expression data analysis, such as
identification of biomarkers, prediction of health
status or identification of the type of disease,
detection of the nature of gene interaction, and
reconstruction of gene regulatory networks.

Our research aims to improve the efficiency of cancer
diagnosis systems using gene expression data by focusing on
object classification via gene expression profiles, evaluating
various CNN and RNN architectures, including hybrid
models, optimizing their structures and hyperparameters
through Bayesian optimization and k-fold cross-validation,
proposing a hybrid quality criterion and an integrated F1-
score for data classification, and investigating hybrid deep
learning ensembles for enhanced decision-making accuracy.

The main contributions of this research are:
• The methods of applying RNN for gene expression
data processing were further developed in our study.
We explored two types of RNN: Long Short-TermMem-
ory (LSTM) and Gated Recurrent Unit (GRU). A par-
ticular enhancement here is our proposed algorithm
for optimizing the architecture and hyperparameters of
the RNN. This enhancement includes a comparative
analysis of optimization methods, such as ordered
grid search and the Bayesian optimization algorithm,
providing a more systematic and efficient approach to
RNN optimization.

• We proposed a hybrid quality criterion for data clas-
sification, which is computed as a weighted sum of
partial quality criteria assessed during the simulation
process. Another significant enhancement is our pro-
posed integral criterion of the F1 score, employing
the Harrington desirability method. This method is
instrumental in determining the partial values of the
F1 score for individual classes, thus offering a more
nuanced and detailed assessment of model performance.

• Our research introduces a novel hybrid model that
combines various machine learning methods, aimed
at increasing the objectivity in identifying the sam-
ples under investigation. A significant methodological
enhancement in our study is the presentation of this
model as a block diagram illustrating a step-by-step
information processing procedure. Initially, various
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deep learning models are applied to a set of gene
expression data, leading to the formation of intermediate
solutions. These solutions are then structured as a data
table for further processing by a classifier at the second
hierarchical level. As a particular addition to our model,
a decision tree algorithm (Classification and Regression
Trees - CART) is employed as a classifier in the final
step, which aids in forming the definitive decision about
the state of the object.

The manuscript is structured as follows:
• Section II reviews current research in this domain,
highlighting unresolved aspects of the overarching
problem.

• Section III presents the theoretical parts of the research,
including the flowchart of the stepwise procedure
for processing gene expression data, steps of the
experimental dataset formation, brief information about
the Bayesian optimization algorithm with 5-fold cross-
validation application, used DL-based models and
quality criteria used for the models’ effectiveness
evaluation.

• Section IV contains the experimental parts of the
research, simulation, obtained results, and discussion.

• Section V contains the conclusions of the research.

II. RELATED WORKS
The burgeoning role of machine learning (ML), especially
DL, in analysing and interpreting experimental data in diverse
bioinformatics domains is highlighted in numerous scientific
studies and reviews. The review [2] extensively examines DL
methods used for detecting DNA/RNAmotifs and identifying
transcription factor binding sites, which are key in human
gene regulation. This study discusses 33 unique DL models
designed for DNA/RNA motif detection, focusing on their
distinct design approaches and implementation styles. The
authors also propose methodologies to assess the efficiency
of these DL models, considering aspects like model size,
automatic calibration, tool selection, and training datasets.

In [3], the authors explore the application of DL for ana-
lyzing tumour heterogeneity through single-cell and spatial
transcriptomic sequencing data. The research underscores
how deep learning facilitates high-resolution insights, crucial
for advancing precision oncology, including early cancer
detection, diagnosis, patient survival rate assessment, and
cancer treatment planning. Similarly, [4] addresses the
diagnostic challenges of lung cancer using single histological
slides. Employing recent advancements in digital pathology,
this study illustrates the potential of DL in classifying lung
cancer subtypes, predicting outcomes, deciphering muta-
tional patterns, and estimating expression from histological
and cytological images.

The [5] focuses on the prevalence of oral cancer and the
transformative impact of artificial intelligence (AI) for its
early detection and treatment. This comprehensive review,
adhering to the PRISMA-ScR guidelines, compares various
machine and deep learning models in identifying early-stage

oral cancer lesions, highlighting the potential benefits and
limitations of AI in oncological research.

Overall, these studies emphasize the vital role of machine
learning and deep learning techniques in processing and
analyzing gene expression data. The following subsections
will delve deeper into recent advancements and applications
of CNNs, RNNs, and Bayesian optimization algorithms in
this field.

A. CONVOLUTIONAL NEURAL NETWORK
Much research is dedicated to using CNNs for gene
expression data processing. For instance, [6] explores using
CNNs for processing microarray gene expression data from
the Lung Harvard 2 Dataset (LH2) for medical diagnosis.
The study adopts a two-tiered approach: initially applying the
Short-Term Fourier Transform (STFT) for feature extraction
and then using Particle Swarm Optimization (PSO) and
Harmonic Search (HS) for feature selection is carried out.
This is followed by employing various classifiers, including
Support Vector Machine (SVM) and CNN. Notably, the
combination of STFT, PSO-selected features, and SVM (RBF
kernel) classifier achieved the highest accuracy, reaching
94.47%.

In [7], researchers investigate different CNN types and
architectures for predicting cancer types using gene expres-
sion profiles. They introduce three models: 1D-CNN, 2D-
Vanilla-CNN, and 2D-Hybrid-CNN, all trained on a dataset
from The Cancer Genome Atlas (TCGA), encompassing
10,340 samples across 33 cancer types. These models
demonstrated high accuracy rates (93.9-95.0%), with the 1D-
CNNmodel identifying an average of 108 cancer markers per
class, including known markers for specific cancers. Their
methodology, effectively minimizing the influence of tissue-
of-origin, shows great promise for future cancer diagnostics.

In [8], the authors detail using CNNs to predict and
classify various cancer types using 2D images derived from
gene expression profiles and Protein-Protein Interaction (PPI)
networks. Applied to a dataset of 6,136 human samples
across 11 cancer types, this approach achieved an accuracy
of 97.4% for distinguishing between normal and tumor
samples and 95.4% for classifying the 11 cancer types. This
innovative technique of generating cancer networks for CNN
applications could significantly enhance cancer diagnosis and
biomarker identification.

The study [9] examines using GCNN to classify tumor and
non-tumor samples into 33 cancer types or as normal, based
on unstructured gene expressions. Using TCGA dataset, the
GCNN-based models reached prediction accuracies up to
94.7% across 34 classes, identifying 428 specific marker
genes. This indicates that GCNN models are highly effective
in cancer classification, leveraging cancer-specific marker
genes.

However, these studies, along with others, often depend
on graph search algorithms for optimal hyperparameter
selection, which can be time and resource-intensive. Also,
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when handling multi-class problems, classification accura-
cies varied between 94% and 95%. Our previous research (
[10], [11]) involved exploring various CNN architectures for
both binary and multi-class problems using gene expression
data from different cancer types. We achieved around 97%
accuracy for multi-class tasks by de-parallelizing the data
processing flow and employing amethod of alternative voting
for the final decision. This paper extends our investigation
into applying CNNs for multi-class problems using gene
expression data.

B. RECURRENT NEURAL NETWORK
As was noted hereinbefore, the RNN is widely recognized
for its effectiveness in processing sequential data like text,
time series, and speech. In [12], the use of LSTM-RNN
architecture was explored for optimizing codon usage in
protein sequences. The novel tool was developed to learn
codon usage bias from a genomic dataset comprising over
7,000 Escherichia coli genes. By capturing the sequential
context of codon usage, this method aligns synthetic gene
codon selection more closely with the host genome than tra-
ditional methods, potentially enhancing recombinant protein
expression more effectively.

Another study, [13], applies RNNs to modern investment
challenges in the high-frequency trading era, focusing on the
Markowitz model. The research presents an in-depth analysis
of the model’s convergence and portfolio optimization,
showing that this new approach, when tested with Dow Jones
Industrial Average data, yielded higher returns with reduced
risks, outperforming the DJIA index.

The [14] investigates hybrid RNN models for protein
secondary structure prediction, a key task in determining
protein configurations from amino acid sequences. This study
introduced a Hybrid Recurrent Neural Networks (HRNN)
approach, incorporating GRU, LSTM, and their bidirectional
variants, BGRU and BLSTM, within a two-dimensional
RNN (2D-RNN) framework. By integrating protein sequence
features with the Position-Specific Scoring Matrix (PSSM),
the HRNN models demonstrated a notable enhancement in
prediction accuracy, with BiGRU and BiLSTM techniques
achieving up to 93% accuracy.

Despite these advancements, a gap remains in the applica-
tion of RNNs for gene expression data processing, a topic less
explored than CNNs. Notably, RNNs typically have fewer
hyperparameters than CNNs, potentially simplifying the
model-tuning process during hyperparameter optimization.
These insights underscore the need for further research in this
specific area of RNN application.

C. BAYESIAN OPTIMIZATION METHOD
The Bayesian Optimization Method (BOM) is an optimiza-
tion technique based on Bayesian networks and probability
commonly employed in hyperparameter tuning for machine
learning models. In [15], the authors leveraged BOM to
improve machine learning models in predicting Medial

Tibial Stress Syndrome (MTSS) using 25 anatomic and
anthropometric predictors. This study, involving 180 partici-
pants, validated various machine learning models, including
Ensemble, SVM, and Naive Bayes. Notably, the Naive Bayes
classifier achieved an accuracy of 88.89% and an AUC of
0.8571 in a non-resampling experiment, demonstrating the
potential of these optimized models in clinical MTSS risk
assessment.

In [16], the authors explored using BOM in a novel
machine learning algorithm, combining a multilayer per-
ceptron and random forest (MLP-RF), for forecasting daily
lake surface water temperatures using air temperature data
from eight Polish lakes. This model effectively predicted
temperatures, which is vital for lake ecosystem studies
and maintained impressive performance even over extended
forecast horizons.

In [17], the authors employed BOM alongside a Vision
Transformer architecture to develop a computer-aided diag-
nosis (CAD) system for lung nodule detection fromCT scans.
Validated with 888 CT images from the LUNA16 dataset,
the system achieved a detection sensitivity of 98.39% and a
CPM score of 0.909, highlighting the synergy of Bayesian
Optimization with Vision Transformer in medical imaging.

In [18], the authors introduced an algorithm named adap-
tive successive halving automated hyperparameter optimiza-
tion (ASH-HPO), integrating successive halving, Bayesian
optimization, and progressive sampling. This method was
used to tune hyperparameters for RNN models, specifically
for transient simulations of high-speed channels. Tested
on CNNs, LSTMs, and CNN-LSTM networks, ASH-HPO
demonstrated its efficiency in applications like PCIe Gen
2 and 5 channels and a PAM4 differential channel. Compared
to benchmark HPO methods like standalone Bayesian
optimization, successive halving, and hyperband, ASH-HPO
showed faster convergence in transient simulation issues.

These studies collectively underscore the superiority of
Bayesian optimization methods in optimizing hyperparame-
ters, particularly in comparison to techniques like grid search.
In our research, we extend the exploration of BOM in DL
models, focusing on gene expression data processing.

III. MATERIAL AND METHODS
Figure 2 depicts the flowchart of the stepwise procedure
for processing gene expression data, based on the joint
application of DL models and the Bayesian optimization
algorithm, as implemented in the framework of our research.
The implementation of this procedure involves the following
steps:

1. Formation and pre-processing of gene expression data:
the dataset should be organized as a data frame,
with rows representing examined samples and columns
representing genes.

2. Dataset splitting: The dataset is divided into training
and testing subsets in a 0.7/0.3 ratio. The training subset
is further split into training and validation subsets in
a 0.8/0.2 ratio. These subsets are used to operate the
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FIGURE 2. Flowchart of stepwise procedure for processing gene
expression data, based on the joint application of DL models and the
Bayesian optimization algorithm.

Bayesian optimization algorithm and train the Deep
Learning (DL) model with optimal hyperparameters.

3. Applying the Bayesian optimization method: This
approach is utilized with each DL model to ascertain
the vector of optimal hyperparameters. Implementing
5-fold cross-validation at each epoch of the Bayesian
algorithm operation is essential to this process.

4. Evaluation of model quality: Forming the classification
quality criteria to assess the model’s performance.

5. Training and testing of DL models: This step includes
calculating the classification quality criteria for each
model.

6. Analysis of the obtained results.

A. EXPERIMENTAL DATASET FORMATION AND
PREPROCESSING
The simulation was performed using gene expression data
from patients examined for various cancer types, freely
accessible through The Cancer Genome Atlas (TCGA)
[19]. The gene expression data, acquired via the Illumina
platform [20] through RNA molecule genomic sequencing,
initially encompassed 3269 samples and 19947 genes. Table 1
details the experimental data classification, categorizing
both disease type and corresponding sample numbers and
including counts of samples from healthy, non-cancerous
patients. The gene expression value, in this case, reflects its
activity level, which indicates the intensity of the protein
synthesis process correlated with that gene type and is
proportional to the quantity of akin genes.

In alignment with the methodology elucidated in [10]
and [11], initially, the absolute gene counts were transformed
into a more facilitative range for subsequent processing

TABLE 1. Classification of experimental gene expression data.

(Count Per Million - CPM) utilizing the following formula:

CPMij =
countij∑m
j=1 countij

· 106 (1)

Here: countij represents the number of the jth type of gene
associated with the ith sample; m signifies the total count of
distinct gene types investigated during the experiment.

The implementation of this step significantly reduced
the variation range of the absolute values defining the
expression (activity level) of the respective genes. In the
second phase, data normalization was conducted by applying
the function log2(CPM ) to all values. In the third phase, non-
expressed genes were removed according to the condition
log2(CPM ) ≤ 0 for all samples under investigation,
reducing the gene count by 682 and shaping the gene
expression experimental data matrix as: E = (3269×19265).
In the final phase, negative gene expression values were
replaced with zeros, corresponding to non-expressed genes
for some samples, and to ensure accurate initialization of
CNN filters, the number of gene expression profiles was
increased to 19300 by supplementing with profiles having
zero expression. As demonstrated in [21], CNNs possess a
high level of resilience to the noise component, meaning
that when using 19265 gene expression values as attributes,
increasing their number by 35 (gene profiles with zero
expression) will not affect sample identification results.

B. BAYESIAN OPTIMIZATION METHOD
Grid search, a traditional method for hyperparameter
selection in DL-based neural networks, is known for its
intensive computational and time demands. The ordered
grid search offers some optimization to enhance efficiency,
yet it falls short of being fully optimal. The selection of
hyperparameters is crucial, as it significantly influences the
model’s performance, highlighting the importance of an
effective optimization process. In this context, we explore
using the Bayesian optimization algorithm to automate the
determination of optimal hyperparameters.

Bayesian optimization operates on the principle of an
informed search, utilizing previous findings to guide the
optimization path [22], [23]. It involves two main elements:

• Surrogate Model: Typically a Gaussian process, this
statistical model approximates the objective function.
It accounts for non-linear dependencies and quantifies
the uncertainty in predictions.
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• Acquisition Function: This function guides the selec-
tion of new evaluation points within the surrogate
model, striking a balance between exploring new areas
(‘exploration’) and utilizing known effective points
(‘exploitation’).

The optimization follows an iterative pattern: it evaluates new
points, updates the surrogate model, and uses the acquisition
function to pick the next point, continuing until a preset
stopping criterion, like a maximum number of iterations,
is met.

5-fold cross-validation is applied at each Bayesian
optimization epoch to train the model correctly (without
overfitting). This step involves dividing the data into five
parts. The model is trained and evaluated five times, using
a different fold as the validation set each time. This
method enhances the accuracy and generalizability of the
model by ensuring hyperparameters are fine-tuned based on
varied subsets of data, thus improving the reliability of the
optimization process.

C. DL-BASED MODELS
Within the framework of our research, we utilized the
following DL-based models: 1D one-layer and two-layer
CNNs, one-layer and two-layer LSTM RNNs, and GRU
RNNs. In applying CNNs, the simulation process involved
optimizing several hyperparameters: the number of filters in
the convolutional layers, the kernel size, maximal pooling,
and the kernel size of the dense layer (dense kernel).
Considering the results of previous studies [10], [11], [21],
the activation functions applied were the sigmoid function
(sigmoid) for convolutional layers, the SELU (Scaled Expo-
nential Linear Unit) function for the dense layer, and the
softmax function for the output layer of neurons. The range
of values for the relevant hyperparameters was as follows:
numf ilters = [8, 64], kernelsize = [3, 10], maxpooling =

[2, 4], and densekernel = [16, 256]. The initial number of
points in the hyperparameter feature space was set at 10, and
the number of subsequent iterations to search for the optimal
hyperparameter combination was 50 when applying a one-
layer CNN and 70 for a two-layer CNN. The Dropout rate,
representing the proportion of neurons being zeroed at each
step during the network training process, was set at 20%.

In the case of RNN model utilized (LSTM and GRU),
the number of neurons in layers varied within the range
from 20 to 100. We also have investigated sequential and
parallel hybrid models based on the integrated application
of CNN and RNN. In each case, to determine the optimal
hyperparameters and control overfitting, we also applied
the Bayesian optimization algorithm and k-fold cross-
validation method. Figure 3 depicts the block diagram of
a hybrid classification model for one-dimensional gene
expression data based on the sequential application of two-
layer convolutional and recurrent neural networks, where the
recurrent network can be implemented using either the LSTM
or GRU algorithm. The value of the hyperparameters can be
changed during the simulation procedure implementation.

FIGURE 3. The block diagram of the hybrid model for classifying
one-dimensional gene expression data, based on the sequential
application of two-layer convolutional and recurrent neural networks.

The application of a CNN at the initial stage of model
implementation is justified by its ability to detect com-
plex dependencies between genes in the respective gene
expression profile. CNNs can identify local dependencies
in the gene expression profile, such as local structures,
motifs, or patterns indicative of specific functions or
pathological processes. Convolutional layers can provide
translation invariance of the data. This means that CNNs
can recognize the same dependencies in various positions of
the gene expression data, regardless of their exact location.
Furthermore, CNNs can automatically select useful features
from gene expression data during training, which aids in
enhancing the quality of forming a fully connected layer
for its subsequent use as input data for the recurrent layer.
Applying a pooling layer (maximal pooling) at the output of
each convolutional layer helps reduce the dimensionality of
the data while preserving important features.

Recurrent layers at the model’s output allow it to consider
the sequence of data, that is, the order of genes in vectors,
which can significantly impact the results of gene expression
data classification. Applying recurrent layers at the output of
the convolutional layer also allows for reducing the number
of model parameters compared to using recurrent layers on a
fully sequential input, which can decrease the risk of model
overfitting. The absence of overfitting was monitored in all
cases through the convergence of the model classification
accuracy character changes and the loss function value,
calculated on the training and validation data during the
model training process.

The second hybrid model explored in our study employs a
parallel approach using various top-performing DL models
for classifying gene expression data. This model makes
intermediate decisions which are then aggregated to form the
final decision. A key step in this process involves applying
a classifier to these intermediate decisions. In this context,
we utilized the CART (Classification and Regression Trees)
machine learning method. CART is an algorithm for building
decision trees, chosen for its ability to recursively split a
dataset into subgroups. This splitting is based on the values of
a specific feature (themost significant intermediate decision),
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resulting in the construction of a decision tree. Each leaf
of this tree corresponds to a distinct class, categorizing the
objects within that subset of data. A notable advantage of
the CART algorithm is its interpretability; the sections and
conditions of the decision tree can be easily understood and
explained.

The block diagram of the hybridmodel for classifying gene
expression data based on an ensemble of machine-learning
methods is illustrated in Figure 4.

FIGURE 4. The block diagram of the hybrid model for classifying gene
expression data, which is based on an ensemble of DL and ML methods.

The following DL models were investigated during the
implementation of the simulation process:

• One- and two-layer CNNs.
• One- and two-layer LSTM and GRU RNNs.
• Hybrid CNN-LSTM model.
• Hybrid CNN-GRU model.
• Five ensembles of DL models:

– Ensemble 1: Two-layer CNN, two-layer GRU
RNN, CNN-LSTM, CNN-GRU.

– Ensemble 2: Two-layer CNN, two-layer GRU
RNN, CNN-GRU.

– Ensemble 3: Two-layer CNN, two-layer GRU
RNN, CNN-LSTM.

– Ensemble 4: Two-layer GRU RNN, CNN-GRU.
– Ensemble 5: Two-layer CNN, two-layer GRU

RNN.

D. QUALITY CRITERIA
In the current research, the classification of objects was
performed based on gene expression data, utilizing metrics
based on the evaluation of Type I and Type II errors [24]:

• Classification Accuracy - represents the aggregate
number of samples correctly identified:

ACC =
TP+ TN

TP+ FP+ TN + FN
(2)

• The F1-score is a measure that evaluates the accuracy of
a classifier when the samples are distributed in separate
classes, by considering both the precision (PR) and
recall (RC) of the prediction. It is computed as the
harmonic mean of PR and RC.

F1 =
2 · PR · RC
PR+ RC

(3)

Here, PR is the ratio of true positive predictions to the
total positive predictions made, and RC is the ratio of
true positive predictions to the actual positive instances
in the dataset:

PR =
TP

TP+ FP
; RC =

TP
TP+ FN

(4)

The F1-score ranges from 0 to 1, where 1 indicates
perfect precision and recall, and 0 indicates the worst.
In the aforementioned formulas, TP (True Positive) and
TN (True Negative) represent the number of objects cor-
rectly categorized into their respective classes, whereas
FP (False Positive) and FN (False Negative) denote the
number of objects inaccurately assigned.
It is noteworthy that in addressing a multiclass problem,
criterion (2) evaluates the overall accuracy of sample
distribution among classes, while criterion (3) assesses
the accuracy of sample distribution within each class
independently.

• Cross-entropy Loss function (L), calculated during the
model validation procedure implementation. This crite-
rion measures the dissimilarity between the predicted
probability distribution and the actual distribution. In the
context of a multi-class classification task with C
classes:

L(y, ŷ) = −
1
N

N∑
i=1

C∑
j=1

yijlog(ŷij) (5)

Here: yij is a binary indicator of whether class j is
the correct classification for observation i; ŷij is the
predicted probability that observation i is of class j; N
is the total number of observations.

Considering that, when dealing with many classes, ana-
lyzing F1-score values corresponding to the classes to select
the optimal alternative from a list of hyperparameters can
be challenging, an integrated F1-score value was calculated.
Implementation of this procedure is based on the values
obtained in the previous step, applying Harrington’s desir-
ability method, which is one of the effective methods for
solving multicriteria problems. The algorithm for implement-
ing this procedure involves the following steps:

1) Initialization:
• Present the F1 score values in a matrix format,
where rows represent classes, and columns -
the hyperparameter values being explored in this
phase.

2) Calculation of private desirabilities:
• Determine the minimum and maximum values
of the F1-score during the relevant phase of
the DL model operation (using the respective
hyperparameter combination).

• Transform the scale of F1-score values into a
linear scale of the dimensionless parameter Y ,
considering the boundary values of the F1-score
defined in the previous step (the value of parameter
Y , according to the desirability method, varies
from Ymin = −2 to Ymax = 5). Here, coefficients
of the linear equation are calculated in the first step:

Ymin = a+ b · F1min
Ymax = a+ b · F1max (6)
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In the second step, a direct transformation of F1-
score values into Y values occurs:

Y = a+ b · F1 (7)

• Calculate private desirabilities for each F1-score
value:

d = exp(− exp(−Y )) (8)

3) Calculation of the integrated F1-score value:
• For each column of the matrix obtained in step 2,
calculate the integrated F1-score value as the
geometric mean of all private desirabilities:

F1jint =

(
9∏
i=1

dij

) 1
9

(9)

where j represents the corresponding column of the
matrix of private desirabilities.

4) Analysis of the obtained results: Create a diagram
showing the dependency of the integrated F1-score
values on the respective combination of the hyper-
parameter values. Select the optimal combination of
the hyperparameter values that corresponds to the
maximum of the integrated F1-score.

E. CALCULATION OF THE COMPOSITE CLASSIFICATION
QUALITY CRITERION
It should be noted that in most cases, determining the
optimal combination of neural network hyperparameters
based on a combination of classification quality criteria
is challenging. The values of the criteria can contradict
each other. Furthermore, a small difference in values can,
to some extent, complicate the process of selecting a list of
optimal DL hyperparameters. In this case, it is advisable to
calculate a composite quality criterion based on computed
individual criteria such as classification accuracy of samples,
loss function value, and integrated F1-score value, wherein
higher values of accuracy and F1-score and a lower value of
the loss function correspond to a higher-quality model. The
calculation of the composite quality criterion was carried out
using the weighted average method:

QCweighted =

n∑
i=1

wiQCi (10)

where:wi is the weight of the corresponding i-thQC criterion
(Quality Criterion).

The algorithm for calculating criterion (10) within the
framework of the current research involves the following
steps:

1) Inverting the loss function values into a vector of values
that increase with the enhancement of the model’s
attractiveness:

loss′i = max(loss) − lossi (11)

2) Normalization of all criterion values within the range
[0, 1]:

QCnorm
i =

QCi − min(QC)
max(QC) − min(QC)

(12)

3) Initialization of the weight vector for the used criteria.
When calculating the composite classification quality
criterion, it was assumed that the weight of the loss
function value, calculated on the data for model
validation, is half as significant as the weights of the
accuracy criterion and the integrated F1 score value,
calculated on the test data subset. Therefore, the weight
vector for the criteria vectorQC = (ACC,F1int, loss′)
was initialized as follows: w = (0.4, 0.4, 0.2).

4) Calculation of the composite criterion value using
formula (10):

QCcomp
i = w[1] · ACCnorm

i + w[2] · F1normi

+ w[3] · lossnormi (13)

A higher value of the criterion (13) corresponds to a better
alternative.

IV. SIMULATION, RESULTS AND DISCUSSION
Figure 5 presents charts depicting the Accuracy and Loss
metrics for both the training and validation datasets across
epochs, specifically during the training of a one-layer CNN
model. Similar charts were generated for other models.
Analysis of these charts reveals no signs of overfitting. This
is evidenced by the consistent changes in accuracy and loss
values for both the training and validation datasets throughout
the training and validation phases of the model.

FIGURE 5. Charts depicting the accuracy and loss metrics for both the
training and validation datasets across epochs, specifically during the
training of a one-layer CNN model.

Table 2 and 3 displays the simulation results regarding
applying the Bayesian optimization algorithm for one-layer
and two-layer CNNs, LSTM and GRU RNNs to determine
the optimal combination of hyperparameters.

Tables 4 and 5 show the classification results of test subset
data samples (981) using one-layer (Table 4) and two-layer
(Table 5) CNNs, the optimal hyperparameters of which were
determined using the Bayesian optimization algorithm.

Tables 6 - 7 and Tables 8 - 9 present the simulation
results regarding the application of LSTM and GRU RNN
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TABLE 2. Simulation results regarding the application of the Bayesian
optimization algorithm for determining the optimal combination of
hyperparameters for one-layer and two-layer CNNs.

TABLE 3. Simulation results regarding the application of the Bayesian
optimization algorithm for determining the optimal combination of
hyperparameters for one-layer and two-layer RNNs.

TABLE 4. Simulation results regarding the application of a one-layer CNN
for the classification of various types of cancer diseases.

TABLE 5. Simulation results regarding the application of a two-layer CNN
for the classification of various types of cancer diseases.

TABLE 6. Simulation results regarding the application of a one-layer
LSTM-RNN for the classification of various types of cancer diseases.

with optimal number of neurons in the recurrent layers,
respectively.

TABLE 7. Simulation results regarding the application of a two-layer
LSTM-RNN for the classification of various types of cancer diseases.

TABLE 8. Simulation results regarding the application of a one-layer
GRU-RNN for the classification of various types of cancer diseases.

TABLE 9. Simulation results regarding the application of a two-layer
GRU-RNN for the classification of various types of cancer diseases.

TABLE 10. Simulation results regarding the application of a hybrid model
CNN-LSTM-RNN for the classification of various types of cancer diseases.

The classification results of the gene expression data test
subset, obtained by applying hybrid CNN-LSTM and CNN-
GRU models, are presented in Tables 10 and 11 respectively.

Figure 6 depicts the results of a comparative analysis of
all types of DL neural networks and their combinations used
during the simulation process.

The analysis of the obtained results indicates that the clas-
sification accuracy of the samples is consistently high across
all scenarios. Specifically, accuracy ranges from 96.6%
with a single-layer CNN and LSTM RNN, to 97.8% when
employing a two-layer GRU RNN. Notably, the two-layer
GRU RNN showed superior performance in gene expression
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TABLE 11. Simulation results regarding the application of a hybrid model
CNN-GRU-RNN for the classification of various types of cancer diseases.

FIGURE 6. Results of the comparative analysis of different types of DL
neural networks: a) classification accuracy; b) F 1-score integrated
criterion; c) loss function values; d) composite quality criterion for data
classification.

data analysis, excelling in overall classification accuracy
(Accuracy) as well as in accuracy for individual classes
(Precision, Recall, F1-score). This is further corroborated by
the distribution patterns of the composite criterion values
(Comp QC = 0.8).

It is important to note that the values of Precision, Recall,
and F1-score vary with different DL neural network types
and structures. This variation underlines the importance of
using the F1-score as an integrated criterion, calculated
for relevant classes as outlined in section III-D. For more
accurate comparability, the range of F1-score values across
all models was normalized (the minimal and maximal F1-
score criterion values were determined using the matrix of
all F1-score evaluated for all models), ensuring a consistent
scale for different F1-score vectors. The coefficients ‘a’ and
‘b’ in equation (7) remain constant across all models.

Further analysis of the integrated F1-score values for
different models reaffirms the superiority of the two-layer
GRU RNN model. In this instance, the integrated F1-score
is 0.876, which is higher than that of other models evaluated.

It’s important to highlight that the lowest classification
accuracy was observed in samples pertaining to the first class.
This outcome can largely be attributed to the limited number
of samples available - only 79 in total, with 22 allocated for
the test subset. Such a small sample size poses challenges for
effective network training. Notably, augmenting the number

TABLE 12. Comparison of various models for multiclass problem-solving
using different DL models for cancer identification.

of samples has been shown to considerably decrease the
variability in F1-score values.

The next phase in the simulation process involves utilizing
an ensemble of machine learning methods. As noted in
section III-C, this step involves the parallelizing data
processing and implementing a consensus decision-making
approach based on the interim outcomes from the previous
stage. Such a strategy is expected to significantly improve
objectivity in finalizing decisions about the object’s state.

The simulation results on applying the hybrid model based
on the ensemble of DL and ML methods are shown in
Figure 7.

FIGURE 7. Results of the simulation regarding a comparative analysis of
DL and ML method ensembles effectiveness.

From the analysis of the results, it becomes clear that using
a DL-based models ensemble for classifying a single gene
expression dataset does not necessarily offer an advantage
in terms of classification accuracy. The quality of sample
identification is diminished when compared to the use of
optimally tuned two-layer CNN and GRU RNN models.

However, it’s noteworthy that the first ensemble of DL and
ML models shows high accuracy in categorizing objects into
individual classes (F1-score integrated value). Furthermore,
when compared to similar multiclass problem-solving using
different DL models for cancer identification as presented in
Table 12, the classification accuracy is higher in all instances
when using the investigated DL models. This underscores
the significance of selecting optimal model hyperparameters
tailored to the specific data being analyzed.

Considering the research outlined in [27], [28], and [29],
we can highlight the key performances of our proposed
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technique. In these prior studies, the authors developed
effective methods for selecting informative attributes (genes)
and applied both machine learning and deep learning
techniques to identify various types of cancer. While these
studies yielded interesting results, their focus was primarily
on feature selection followed by the application of suitable
classifiers for sample identification, utilizing 10-fold cross-
validation during model training.

In contrast, our research explored a range of deep learning
models, including hybrid models, for the classification of
various cancer types based on a comprehensive set of genes
(19,947). The main objective of our study was to optimize
the hyperparameters of the models. This was achieved
through the combined use of the Bayesian optimization
algorithm and k-fold cross-validation in each epoch of
the algorithm’s application. Additionally, we enhanced the
classification quality criteria by introducing an integrated
quality criterion, allowing for a more meticulous evaluation
of the classification results. This approach represents the
principal distinction between our methodology and the
existing ones, offering a more comprehensive and refined
analysis in the field of cancer classification.

A minor decrease in sample classification accuracy with
ensemble-based DL models could be offset by the increased
objectivity in making final decisions about the object’s state.
In multiclass problems addressed by models ensemble. Mod-
els can show for individual samples different identification
results. This can lead to a slight drop in classification
accuracy, as observed in our results. Nevertheless, higher
objectivity is attained through the consistent identification
of sample states across various methods. Improving the
accuracy of the samples identification, in this instance, could
be achieved by a more detailed pre-processing of gene
expression data, employing gene ontology analysis, cluster,
and bicluster analyses. Exploring these methods further will
be the focus of our subsequent research.

V. CONCLUSION
This research has performed a comprehensive compara-
tive analysis of various DL models for gene expression
data processing, highlighting different techniques’ strengths,
weaknesses, and potential applications. The research encom-
passed different types and architectures of CNNs and
RNNs, including hybrid models that combine both models.
By employing a Bayesian optimization algorithm with 5-
fold cross-validation during the appropriate model training,
optimal hyperparameters for each model were determined.
The study found that two-layer GRURNNwas most effective
for classifying gene expression data, achieving a classifi-
cation accuracy of 97.8%. Further, we proposed a hybrid
model utilizing various DL techniques for gene expression
data classification. This model represented as a step-by-
step information processing flowchart, applies deep learning
models in parallel at the first stage to form intermediate
solutions, which are then processed by a decision tree-
based classifier (CART) at the second hierarchical level.

Simulations using various combinations and quantities of DL
models at the first level indicated that GRU-based recurrent
networks were more effective regarding the classification
quality criteria, suggesting that adding complexity through
more neural networks does not necessarily yield better
classification accuracy results. However, a minor decrease
in sample classification accuracy with ensemble-based DL
models could be offset by the increased objectivity in making
final decisions about the object’s state.

The prospects of our research are focused on developing
and evaluating various hybrid models for gene expression
data processing, which will integrate gene ontology anal-
ysis, different clustering and biclustering techniques for
grouping co-expressed gene expression profiles, and employ
deep/machine learning methods for forming intermediate and
final solutions regarding the state of the investigated objects.
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